These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27750425)

  • 21. Doping gadolinium versus lanthanum into hydroxyapatite particles for better biocompatibility in bone marrow stem cells.
    Yuan SJ; Qi XY; Zhang H; Yuan L; Huang J
    Chem Biol Interact; 2021 Sep; 346():109579. PubMed ID: 34274335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energetic basis for the molecular-scale organization of bone.
    Tao J; Battle KC; Pan H; Salter EA; Chien YC; Wierzbicki A; De Yoreo JJ
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):326-31. PubMed ID: 25540415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomineralization of Natural Collagenous Nanofibrous Membranes and Their Potential Use in Bone Tissue Engineering.
    Yang M; Zhou G; Castano-Izquierdo H; Zhu Y; Mao C
    J Biomed Nanotechnol; 2015 Mar; 11(3):447-56. PubMed ID: 25883539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-crystal interface mediates cell adhesion and proangiogenic secretion.
    Wu F; Chen W; Gillis B; Fischbach C; Estroff LA; Gourdon D
    Biomaterials; 2017 Feb; 116():174-185. PubMed ID: 27940370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces.
    Shen JW; Wu T; Wang Q; Pan HH
    Biomaterials; 2008 Feb; 29(5):513-32. PubMed ID: 17988731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures.
    D'Elía NL; Mathieu C; Hoemann CD; Laiuppa JA; Santillán GE; Messina PV
    Nanoscale; 2015 Nov; 7(44):18751-62. PubMed ID: 26505580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adhesion profile and differentiation capacity of human adipose tissue derived mesenchymal stem cells grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite nano-coated surfaces.
    Bostancioglu RB; Gurbuz M; Akyurekli AG; Dogan A; Koparal AS; Koparal AT
    Colloids Surf B Biointerfaces; 2017 Jul; 155():415-428. PubMed ID: 28460304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concentration-dependent effects of fibronectin adsorbed on hydroxyapatite surfaces on osteoblast adhesion.
    Matsui N; Nozaki K; Ishihara K; Yamashita K; Nagai A
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():378-83. PubMed ID: 25579937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers.
    Li K; Wang J; Liu X; Xiong X; Liu H
    Carbohydr Polym; 2012 Nov; 90(4):1573-81. PubMed ID: 22944418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics simulations of adsorption and desorption of bone morphogenetic protein-2 on textured hydroxyapatite surfaces.
    Huang B; Lou Y; Li T; Lin Z; Sun S; Yuan Y; Liu C; Gu Y
    Acta Biomater; 2018 Oct; 80():121-130. PubMed ID: 30223095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein adsorption on single-crystal hydroxyapatite particles with preferred orientation to a(b)- and c-axes.
    Zhuang Z; Aizawa M
    J Mater Sci Mater Med; 2013 May; 24(5):1211-6. PubMed ID: 23386210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration.
    Shi P; Wang Q; Yu C; Fan F; Liu M; Tu M; Lu W; Du M
    Colloids Surf B Biointerfaces; 2017 Jul; 155():477-486. PubMed ID: 28472751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orientation of bone mineral and its role in the anisotropic mechanical properties of bone--transverse anisotropy.
    Sasaki N; Matsushima N; Ikawa T; Yamamura H; Fukuda A
    J Biomech; 1989; 22(2):157-64. PubMed ID: 2540205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antheraea pernyi silk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation.
    Jiayao Z; Guanshan Z; Jinchi Z; Yuyin C; Yongqiang Z
    Microsc Res Tech; 2017 Mar; 80(3):305-311. PubMed ID: 27859871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-Dimensional Hydroxyapatite Nanostructures with Tunable Length for Efficient Stem Cell Differentiation Regulation.
    Ma B; Zhang S; Liu F; Duan J; Wang S; Han J; Sang Y; Yu X; Li D; Tang W; Ge S; Liu H
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33717-33727. PubMed ID: 28906099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: effects on mineral coating morphology and growth kinetic.
    D'Elía NL; Gravina AN; Ruso JM; Laiuppa JA; Santillán GE; Messina PV
    Biochim Biophys Acta; 2013 Nov; 1830(11):5014-26. PubMed ID: 23891938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan-HAp scaffold.
    Wang G; Qiu J; Zheng L; Ren N; Li J; Liu H; Miao J
    J Biomater Sci Polym Ed; 2014; 25(16):1813-27. PubMed ID: 25166866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.
    Chuenjitkuntaworn B; Osathanon T; Nowwarote N; Supaphol P; Pavasant P
    J Biomed Mater Res A; 2016 Jan; 104(1):264-71. PubMed ID: 26362586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins.
    Kandori K; Oda S; Fukusumi M; Morisada Y
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):140-5. PubMed ID: 19515538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydroxyapatite as a Vehicle for the Selective Effect of Superparamagnetic Iron Oxide Nanoparticles against Human Glioblastoma Cells.
    Pernal S; Wu VM; Uskoković V
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39283-39302. PubMed ID: 29058880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.