BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27751572)

  • 1. Methods comparison, transport and distribution of polar herbicides in the Baltic Sea.
    Skeff W; Orlikowska A; Schulz-Bull DE
    Mar Pollut Bull; 2017 Jan; 114(2):1110-1117. PubMed ID: 27751572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glyphosate and AMPA in the estuaries of the Baltic Sea method optimization and field study.
    Skeff W; Neumann C; Schulz-Bull DE
    Mar Pollut Bull; 2015 Nov; 100(1):577-585. PubMed ID: 26342388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineralization of isoproturon, mecoprop and acetochlor in a deep unsaturated limestone and sandy aquifer.
    Janniche GS; Lindberg E; Mouvet C; Albrechtsen HJ
    Chemosphere; 2010 Nov; 81(7):823-31. PubMed ID: 20817258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The challenge of detecting the herbicide glyphosate and its metabolite AMPA in seawater - Method development and application in the Baltic Sea.
    Wirth MA; Schulz-Bull DE; Kanwischer M
    Chemosphere; 2021 Jan; 262():128327. PubMed ID: 33182089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertical small scale variations of sorption and mineralization of three herbicides in subsurface limestone and sandy aquifer.
    Janniche GS; Mouvet C; Albrechtsen HJ
    J Contam Hydrol; 2011 Apr; 123(3-4):167-77. PubMed ID: 21320736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliable methods for determination of triazine herbicides and their degradation products in seawater and marine sediments using liquid chromatography-tandem mass spectrometry.
    Rodríguez-González N; Uzal-Varela R; González-Castro MJ; Muniategui-Lorenzo S; Beceiro-González E
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7764-7775. PubMed ID: 28127690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipation of mecoprop-P, isoproturon, bentazon and S-metolachlor in heavy metal contaminated acidic and calcareous soil before and after EDTA-based remediation.
    Gluhar S; Kaurin A; Grubar T; Prosen H; Lestan D
    Chemosphere; 2019 Dec; 237():124513. PubMed ID: 31401429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea - Summary of 3years of studies.
    Siedlewicz G; Białk-Bielińska A; Borecka M; Winogradow A; Stepnowski P; Pazdro K
    Mar Pollut Bull; 2018 Apr; 129(2):787-801. PubMed ID: 29100638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microplastic concentrations in beach sediments along the German Baltic coast.
    Stolte A; Forster S; Gerdts G; Schubert H
    Mar Pollut Bull; 2015 Oct; 99(1-2):216-29. PubMed ID: 26198261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal variability, long-term distribution (2001-2014), and risk assessment of polar organic micropollutants in the Baltic Sea.
    Fisch K; Brockmeyer B; Gerwinski W; Schulz-Bull DE; Theobald N
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):39296-39309. PubMed ID: 33755886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissipation of six acid herbicides in water and sediment of two Canadian prairie wetlands.
    Degenhardt D; Cessna AJ; Raina R; Farenhorst A; Pennock DJ
    Environ Toxicol Chem; 2011 Sep; 30(9):1982-9. PubMed ID: 21688306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritised pharmaceuticals in German estuaries and coastal waters: Occurrence and environmental risk assessment.
    Kötke D; Gandrass J; Xie Z; Ebinghaus R
    Environ Pollut; 2019 Dec; 255(Pt 1):113161. PubMed ID: 31541808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of perfluorinated organic acids in the North and Baltic Seas. Part 2: distribution in sediments.
    Theobald N; Caliebe C; Gerwinski W; Hühnerfuss H; Lepom P
    Environ Sci Pollut Res Int; 2012 Feb; 19(2):313-24. PubMed ID: 21739179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the herbicide 4-chloro-2-methylphenoxyacetic acid and its main metabolite, 4-chloro-2-methylphenol in water and soil by liquid chromatography-electrospray tandem mass spectrometry.
    Pozo O; Pitarch E; Sancho JV; Hernández F
    J Chromatogr A; 2001 Jul; 923(1-2):75-85. PubMed ID: 11510563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TBT and its metabolites in sediments: Survey at a German coastal site and the central Baltic Sea.
    Abraham M; Westphal L; Hand I; Lerz A; Jeschek J; Bunke D; Leipe T; Schulz-Bull D
    Mar Pollut Bull; 2017 Aug; 121(1-2):404-410. PubMed ID: 28629811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Managing dredged material in the coastal zone of the Baltic Sea.
    Staniszewska M; Boniecka H
    Environ Monit Assess; 2017 Jan; 189(2):46. PubMed ID: 28050770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence, transportation, and distribution difference of typical herbicides from estuary to bay.
    Ouyang W; Zhang Y; Gu X; Tysklind M; Lin C; Wang B; Xin M
    Environ Int; 2019 Sep; 130():104858. PubMed ID: 31212164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption-desorption behavior of triazine and phenylurea herbicides in Kishon river sediments.
    Chefetz B; Bilkis YI; Polubesova T
    Water Res; 2004 Dec; 38(20):4383-94. PubMed ID: 15556213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presence of chlorinated paraffins in sediments from the North and Baltic Seas.
    Hüttig J; Oehme M
    Arch Environ Contam Toxicol; 2005 Nov; 49(4):449-56. PubMed ID: 16132413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weight-of-evidence approach in assessment of ecotoxicological risks of acid sulphate soils in the Baltic Sea river estuaries.
    Wallin J; Karjalainen AK; Schultz E; Järvistö J; Leppänen M; Vuori KM
    Sci Total Environ; 2015 Mar; 508():452-61. PubMed ID: 25506908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.