These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 27751882)
41. Dengue Virus Uses a Non-Canonical Function of the Host GBF1-Arf-COPI System for Capsid Protein Accumulation on Lipid Droplets. Iglesias NG; Mondotte JA; Byk LA; De Maio FA; Samsa MM; Alvarez C; Gamarnik AV Traffic; 2015 Sep; 16(9):962-77. PubMed ID: 26031340 [TBL] [Abstract][Full Text] [Related]
42. Development of novel antivirals against flaviviruses. Patkar CG; Kuhn RJ Novartis Found Symp; 2006; 277():41-52; discussion 52-6, 71-3, 251-3. PubMed ID: 17319153 [TBL] [Abstract][Full Text] [Related]
43. A cocrystal structure of dengue capsid protein in complex of inhibitor. Xia H; Xie X; Zou J; Noble CG; Russell WK; Holthauzen LMF; Choi KH; White MA; Shi PY Proc Natl Acad Sci U S A; 2020 Jul; 117(30):17992-18001. PubMed ID: 32669438 [TBL] [Abstract][Full Text] [Related]
44. The many faces of the flavivirus NS1 protein offer a multitude of options for inhibitor design. Watterson D; Modhiran N; Young PR Antiviral Res; 2016 Jun; 130():7-18. PubMed ID: 26944216 [TBL] [Abstract][Full Text] [Related]
45. Rodent models for the study of therapy against flavivirus infections. Charlier N; Leyssen P; De Clercq E; Neyts J Antiviral Res; 2004 Aug; 63(2):67-77. PubMed ID: 15321702 [TBL] [Abstract][Full Text] [Related]
46. Closing the door on flaviviruses: entry as a target for antiviral drug design. Perera R; Khaliq M; Kuhn RJ Antiviral Res; 2008 Oct; 80(1):11-22. PubMed ID: 18585795 [TBL] [Abstract][Full Text] [Related]
47. Perturbation of Intracellular Cholesterol and Fatty Acid Homeostasis During Flavivirus Infections. Pombo JP; Sanyal S Front Immunol; 2018; 9():1276. PubMed ID: 29915602 [TBL] [Abstract][Full Text] [Related]
48. Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target. Lescar J; Luo D; Xu T; Sampath A; Lim SP; Canard B; Vasudevan SG Antiviral Res; 2008 Nov; 80(2):94-101. PubMed ID: 18674567 [TBL] [Abstract][Full Text] [Related]
49. [New approaches to the treatment of the flavivirus infections]. Morozova OV; Isaeva EI; Viazov SO Vopr Virusol; 2015; 60(6):5-9. PubMed ID: 27024909 [TBL] [Abstract][Full Text] [Related]
50. Hijacking autophagy for infection by flaviviruses. Song MH; Sun Y; Qiu XB Virus Res; 2024 Sep; 347():199422. PubMed ID: 38901564 [TBL] [Abstract][Full Text] [Related]
51. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Zhang R; Miner JJ; Gorman MJ; Rausch K; Ramage H; White JP; Zuiani A; Zhang P; Fernandez E; Zhang Q; Dowd KA; Pierson TC; Cherry S; Diamond MS Nature; 2016 Jul; 535(7610):164-8. PubMed ID: 27383988 [TBL] [Abstract][Full Text] [Related]
52. Targeting dengue virus NS4B protein for drug discovery. Xie X; Zou J; Wang QY; Shi PY Antiviral Res; 2015 Jun; 118():39-45. PubMed ID: 25796970 [TBL] [Abstract][Full Text] [Related]
53. Artemisinin inhibits the replication of flaviviruses by promoting the type I interferon production. Wang X; Zheng B; Ashraf U; Zhang H; Cao C; Li Q; Chen Z; Imran M; Chen H; Cao S; Ye J Antiviral Res; 2020 Jul; 179():104810. PubMed ID: 32360948 [TBL] [Abstract][Full Text] [Related]
54. Capsid protein structure in Zika virus reveals the flavivirus assembly process. Tan TY; Fibriansah G; Kostyuchenko VA; Ng TS; Lim XX; Zhang S; Lim XN; Wang J; Shi J; Morais MC; Corti D; Lok SM Nat Commun; 2020 Feb; 11(1):895. PubMed ID: 32060358 [TBL] [Abstract][Full Text] [Related]
55. The role of capsid in the flaviviral life cycle and perspectives for vaccine development. He Y; Wang M; Chen S; Cheng A Vaccine; 2020 Oct; 38(44):6872-6881. PubMed ID: 32950301 [TBL] [Abstract][Full Text] [Related]
56. Mimicking live flavivirus immunization with a noninfectious RNA vaccine. Kofler RM; Aberle JH; Aberle SW; Allison SL; Heinz FX; Mandl CW Proc Natl Acad Sci U S A; 2004 Feb; 101(7):1951-6. PubMed ID: 14769933 [TBL] [Abstract][Full Text] [Related]
57. Finding new medicines for flaviviral targets. Keller TH; Chen YL; Knox JE; Lim SP; Ma NL; Patel SJ; Sampath A; Wang QY; Yin Z; Vasudevan SG Novartis Found Symp; 2006; 277():102-14; discussion 114-9, 251-3. PubMed ID: 17319157 [TBL] [Abstract][Full Text] [Related]
58. Unique structural features of flaviviruses' capsid proteins: new insights on structure-function relationship. Neves-Martins TC; Mebus-Antunes NC; Caruso IP; Almeida FCL; Da Poian AT Curr Opin Virol; 2021 Apr; 47():106-112. PubMed ID: 33721656 [TBL] [Abstract][Full Text] [Related]
59. Context-Dependent Cleavage of the Capsid Protein by the West Nile Virus Protease Modulates the Efficiency of Virus Assembly. VanBlargan LA; Davis KA; Dowd KA; Akey DL; Smith JL; Pierson TC J Virol; 2015 Aug; 89(16):8632-42. PubMed ID: 26063422 [TBL] [Abstract][Full Text] [Related]
60. Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs. Pastorino B; Nougairède A; Wurtz N; Gould E; de Lamballerie X Antiviral Res; 2010 Sep; 87(3):281-94. PubMed ID: 20452379 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]