BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 27751893)

  • 21. Limb remote ischemic conditioning increases Notch signaling activity and promotes arteriogenesis in the ischemic rat brain.
    Ren C; Li S; Wang B; Han R; Li N; Gao J; Li X; Jin K; Ji X
    Behav Brain Res; 2018 Mar; 340():87-93. PubMed ID: 27780723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrahigh sensitive optical microangiography reveals depth-resolved microcirculation and its longitudinal response to prolonged ischemic event within skeletal muscles in mice.
    Jia Y; Qin J; Zhi Z; Wang RK
    J Biomed Opt; 2011 Aug; 16(8):086004. PubMed ID: 21895316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathophysiology of collateral development.
    Heil M; Schaper W
    Coron Artery Dis; 2004 Nov; 15(7):373-8. PubMed ID: 15492584
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High resolution imaging of acne lesion development and scarring in human facial skin using OCT-based microangiography.
    Baran U; Li Y; Choi WJ; Kalkan G; Wang RK
    Lasers Surg Med; 2015 Mar; 47(3):231-8. PubMed ID: 25740313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative analysis of retinal perfusion in mice using optical coherence tomography angiography.
    Alnawaiseh M; Brand C; Bormann E; Wistuba J; Eter N; Heiduschka P
    Exp Eye Res; 2017 Nov; 164():151-156. PubMed ID: 28889963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography.
    Yousefi S; Qin J; Dziennis S; Wang RK
    J Biomed Opt; 2014; 19(7):76015. PubMed ID: 25036212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thrombin promotes arteriogenesis and hemodynamic recovery in a rabbit hindlimb ischemia model.
    Katsanos K; Karnabatidis D; Diamantopoulos A; Kagadis GC; Ravazoula P; Nikiforidis GC; Siablis D; Tsopanoglou NE
    J Vasc Surg; 2009 Apr; 49(4):1000-12. PubMed ID: 19217750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo.
    Wang RK; An L
    Opt Express; 2009 May; 17(11):8926-40. PubMed ID: 19466142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction of extracranial arteriogenesis by an arteriovenous fistula in a pig model.
    Buschmann EE; Lee EJ; Jacobi D; Woischnig AK; Ulusans S; Schumacher M; Smith KH; Pagonas N; Bramlage P; Klisch J; Hillmeister P; Buschmann IR
    Atherosclerosis; 2018 May; 272():87-93. PubMed ID: 29579672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of inflammatory cytokines on arteriogenesis.
    Buschmann I; Heil M; Jost M; Schaper W
    Microcirculation; 2003 Jun; 10(3-4):371-9. PubMed ID: 12851653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. von Willebrand factor deficiency leads to impaired blood flow recovery after ischaemia in mice.
    de Vries MR; Peters EAB; Quax PHA; Nossent AY
    Thromb Haemost; 2017 Jun; 117(7):1412-1419. PubMed ID: 28382367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stretch-induced activation of the transcription factor activator protein-1 controls monocyte chemoattractant protein-1 expression during arteriogenesis.
    Demicheva E; Hecker M; Korff T
    Circ Res; 2008 Aug; 103(5):477-84. PubMed ID: 18669921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collateral arteries grow from preexisting anastomoses in the rat hindlimb.
    Herzog S; Sager H; Khmelevski E; Deylig A; Ito WD
    Am J Physiol Heart Circ Physiol; 2002 Nov; 283(5):H2012-20. PubMed ID: 12384480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arteriogenesis is modulated by bradykinin receptor signaling.
    Hillmeister P; Gatzke N; Dülsner A; Bader M; Schadock I; Hoefer I; Hamann I; Infante-Duarte C; Jung G; Troidl K; Urban D; Stawowy P; Frentsch M; Li M; Nagorka S; Wang H; Shi Y; le Noble F; Buschmann I
    Circ Res; 2011 Aug; 109(5):524-33. PubMed ID: 21719759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of edema volume in skin upon injury in a mouse ear model with optical coherence tomography.
    Qin W; Wang RK
    Lasers Med Sci; 2016 Sep; 31(7):1351-61. PubMed ID: 27282161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced arteriogenesis in mice overexpressing erythropoietin.
    Scholz D; Schaper W
    Cell Tissue Res; 2006 Jun; 324(3):395-401. PubMed ID: 16485134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Granulocyte-macrophage colony-stimulating factor stimulates arteriogenesis in a pig model of peripheral artery disease using clinically applicable infusion pumps.
    Grundmann S; Hoefer I; Ulusans S; Bode C; Oesterle S; Tijssen JG; Piek JJ; Buschmann I; van Royen N
    J Vasc Surg; 2006 Jun; 43(6):1263-9. PubMed ID: 16765251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo OCT microangiography of rodent iris.
    Choi WJ; Zhi Z; Wang RK
    Opt Lett; 2014 Apr; 39(8):2455-8. PubMed ID: 24979017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-vivo Fourier domain optical coherence tomography as a new tool for investigation of vasodynamics in the mouse model.
    Meissner S; Müller G; Walther J; Morawietz H; Koch E
    J Biomed Opt; 2009; 14(3):034027. PubMed ID: 19566320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.