These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27752047)

  • 1. Bumblebees minimize control challenges by combining active and passive modes in unsteady winds.
    Ravi S; Kolomenskiy D; Engels T; Schneider K; Wang C; Sesterhenn J; Liu H
    Sci Rep; 2016 Oct; 6():35043. PubMed ID: 27752047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rolling with the flow: bumblebees flying in unsteady wakes.
    Ravi S; Crall JD; Fisher A; Combes SA
    J Exp Biol; 2013 Nov; 216(Pt 22):4299-309. PubMed ID: 24031057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hummingbird flight stability and control in freestream turbulent winds.
    Ravi S; Crall JD; McNeilly L; Gagliardi SF; Biewener AA; Combes SA
    J Exp Biol; 2015 May; 218(Pt 9):1444-52. PubMed ID: 25767146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Going against the flow: bumblebees prefer to fly upwind and display more variable kinematics when flying downwind.
    Combes SA; Gravish N; Gagliardi SF
    J Exp Biol; 2023 Apr; 226(Suppl_1):. PubMed ID: 37070947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bumblebees compensate for the adverse effects of sidewind during visually guided landings.
    Goyal P; van Leeuwen JL; Muijres FT
    J Exp Biol; 2024 Apr; 227(8):. PubMed ID: 38506223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nectar vs. pollen loading affects the tradeoff between flight stability and maneuverability in bumblebees.
    Mountcastle AM; Ravi S; Combes SA
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10527-32. PubMed ID: 26240364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hawkmoth flight stability in turbulent vortex streets.
    Ortega-Jimenez VM; Greeter JS; Mittal R; Hedrick TL
    J Exp Biol; 2013 Dec; 216(Pt 24):4567-79. PubMed ID: 24072794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration.
    Crall JD; Ravi S; Mountcastle AM; Combes SA
    J Exp Biol; 2015 Sep; 218(Pt 17):2728-37. PubMed ID: 26333927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bees with attitude: the effects of directed gusts on flight trajectories.
    Jakobi T; Kolomenskiy D; Ikeda T; Watkins S; Fisher A; Liu H; Ravi S
    Biol Open; 2018 Oct; 7(10):. PubMed ID: 30135080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence.
    Crall JD; Chang JJ; Oppenheimer RL; Combes SA
    Interface Focus; 2017 Feb; 7(1):20160086. PubMed ID: 28163878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hawkmoth flight in the unsteady wakes of flowers.
    Matthews M; Sponberg S
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30291159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How bumblebees use lateral and ventral optic flow cues for position control in environments of different proximity.
    Linander N; Baird E; Dacke M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 May; 203(5):343-351. PubMed ID: 28429124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bumblebee flight performance in environments of different proximity.
    Linander N; Baird E; Dacke M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Feb; 202(2):97-103. PubMed ID: 26614094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bumblebees perceive the spatial layout of their environment in relation to their body size and form to minimize inflight collisions.
    Ravi S; Siesenop T; Bertrand O; Li L; Doussot C; Warren WH; Combes SA; Egelhaaf M
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31494-31499. PubMed ID: 33229535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The answer is blowing in the wind: free-flying honeybees can integrate visual and mechano-sensory inputs for making complex foraging decisions.
    Ravi S; Garcia JE; Wang C; Dyer AG
    J Exp Biol; 2016 Nov; 219(Pt 21):3465-3472. PubMed ID: 27591315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wing flexibility improves bumblebee flight stability.
    Mistick EA; Mountcastle AM; Combes SA
    J Exp Biol; 2016 Nov; 219(Pt 21):3384-3390. PubMed ID: 27638618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wing wear reduces bumblebee flight performance in a dynamic obstacle course.
    Mountcastle AM; Alexander TM; Switzer CM; Combes SA
    Biol Lett; 2016 Jun; 12(6):. PubMed ID: 27303054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gap perception in bumblebees.
    Ravi S; Bertrand O; Siesenop T; Manz LS; Doussot C; Fisher A; Egelhaaf M
    J Exp Biol; 2019 Jan; 222(Pt 2):. PubMed ID: 30683732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wind and route choice affect performance of bees flying above versus within a cluttered obstacle field.
    Burnett NP; Badger MA; Combes SA
    PLoS One; 2022; 17(3):e0265911. PubMed ID: 35325004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees.
    Reber T; Vähäkainu A; Baird E; Weckström M; Warrant E; Dacke M
    J Exp Biol; 2015 May; 218(Pt 9):1339-46. PubMed ID: 25750416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.