These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 27752506)
1. Ostwald Ripening Stability of Curcumin-Loaded MCT Nanoemulsion: Influence of Various Emulsifiers. Kim SH; Ji YS; Lee ES; Hong ST Prev Nutr Food Sci; 2016 Sep; 21(3):289-295. PubMed ID: 27752506 [TBL] [Abstract][Full Text] [Related]
2. Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms. Koroleva M; Nagovitsina T; Yurtov E Phys Chem Chem Phys; 2018 Apr; 20(15):10369-10377. PubMed ID: 29611566 [TBL] [Abstract][Full Text] [Related]
3. Development of stable curcumin nanoemulsions: effects of emulsifier type and surfactant-to-oil ratios. Ma P; Zeng Q; Tai K; He X; Yao Y; Hong X; Yuan F J Food Sci Technol; 2018 Sep; 55(9):3485-3497. PubMed ID: 30150807 [TBL] [Abstract][Full Text] [Related]
4. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Wooster TJ; Golding M; Sanguansri P Langmuir; 2008 Nov; 24(22):12758-65. PubMed ID: 18850732 [TBL] [Abstract][Full Text] [Related]
5. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors. Chang Y; McLandsborough L; McClements DJ J Agric Food Chem; 2012 Dec; 60(48):12056-63. PubMed ID: 23140446 [TBL] [Abstract][Full Text] [Related]
6. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. Saberi AH; Fang Y; McClements DJ J Colloid Interface Sci; 2013 Dec; 411():105-13. PubMed ID: 24050638 [TBL] [Abstract][Full Text] [Related]
7. Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters. Henry JV; Fryer PJ; Frith WJ; Norton IT J Colloid Interface Sci; 2009 Oct; 338(1):201-6. PubMed ID: 19589533 [TBL] [Abstract][Full Text] [Related]
8. Impact of Fixed Oil on Ostwald Ripening of Anti-Oral Cancer Nanoemulsions Loaded with Weerapol Y; Manmuan S; Chaothanaphat N; Okonogi S; Limmatvapirat C; Limmatvapirat S; Tubtimsri S Pharmaceutics; 2022 Apr; 14(5):. PubMed ID: 35631524 [TBL] [Abstract][Full Text] [Related]
9. Citral and linalool nanoemulsions: impact of synergism and ripening inhibitors on the stability and antibacterial activity against Prakash A; Vadivel V J Food Sci Technol; 2020 Apr; 57(4):1495-1504. PubMed ID: 32180646 [TBL] [Abstract][Full Text] [Related]
10. Nanoemulsions Stable against Ostwald Ripening. Guo Y; Zhang X; Wang X; Zhang L; Xu Z; Sun D Langmuir; 2024 Jan; 40(2):1364-1372. PubMed ID: 38175958 [TBL] [Abstract][Full Text] [Related]
11. Ostwald Ripening Rate of Orange Oil Emulsions: Effects of Molecular Structure of Emulsifiers and Their Oil Composition. Jang Y; Park J; Song HY; Choi SJ J Food Sci; 2019 Mar; 84(3):440-447. PubMed ID: 30714618 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Nanoemulsions Stabilized with Different Emulsifiers and Their Encapsulation Efficiency for Oregano Essential Oil: Tween 80, Soybean Protein Isolate, Tea Saponin, and Soy Lecithin. Zhao S; Wang Z; Wang X; Kong B; Liu Q; Xia X; Liu H Foods; 2023 Aug; 12(17):. PubMed ID: 37685117 [TBL] [Abstract][Full Text] [Related]
13. Influence of Polysorbate 60 on Formulation Properties and Bioavailability of Morin-Loaded Nanoemulsions with and without Low-Saponification-Degree Polyvinyl Alcohol. Ikeuchi-Takahashi Y; Kobayashi A; Ishihara C; Matsubara T; Matsubara H; Onishi H Biol Pharm Bull; 2018; 41(5):754-760. PubMed ID: 29709912 [TBL] [Abstract][Full Text] [Related]
14. Study of nanoemulsions using carvacrol/MCT-(Oleic acid-potassium oleate)/ Tween 80 ®- water system by low energy method. Santamaría E; Maestro A; Vilchez S; González C Heliyon; 2023 Jun; 9(6):e16967. PubMed ID: 37332948 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the Stability and Digestibility of Long-Chain Omega-3 Algal Oil Nanoemulsions Prepared with Lecithin and Tween 40 Emulsifiers Using an In Vitro Digestion Model. Zhou Q; Lane KE; Li W Foods; 2024 Jul; 13(15):. PubMed ID: 39123598 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of nanoemulsions for encapsulation and delivery of vitexin: antioxidant activity, storage stability and in vitro digestibility. Chomchoey S; Klongdee S; Peanparkdee M; Klinkesorn U J Sci Food Agric; 2023 Mar; 103(5):2532-2543. PubMed ID: 36478565 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of physicochemical and encapsulation stability of O Katsouli M; Giannou V; Tzia C Food Funct; 2020 Oct; 11(10):8878-8892. PubMed ID: 32986051 [TBL] [Abstract][Full Text] [Related]
18. Impact of ripening inhibitors on molecular transport of antimicrobial components from essential oil nanoemulsions. Ryu V; Corradini MG; McClements DJ; McLandsborough L J Colloid Interface Sci; 2019 Nov; 556():568-576. PubMed ID: 31479830 [TBL] [Abstract][Full Text] [Related]
19. The composition and oxidative stability of vegetarian omega-3 algal oil nanoemulsions suitable for functional food enrichment. Lane KE; Zhou Q; Robinson S; Li W J Sci Food Agric; 2020 Jan; 100(2):695-704. PubMed ID: 31602647 [TBL] [Abstract][Full Text] [Related]
20. Effect of Temperature, Oil Type, and Copolymer Concentration on the Long-Term Stability of Oil-in-Water Pickering Nanoemulsions Prepared Using Diblock Copolymer Nanoparticles. Hunter SJ; Chohan P; Varlas S; Armes SP Langmuir; 2024 Feb; 40(7):3702-14. PubMed ID: 38316052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]