These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27752686)

  • 1. Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization.
    Li Y; Fang Y; Wang J; Wang L; Tang S; Jiang C; Zheng L; Mei Y
    Lab Chip; 2016 Nov; 16(22):4406-4414. PubMed ID: 27752686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications.
    Huang G; Bolaños Quiñones VA; Ding F; Kiravittaya S; Mei Y; Schmidt OG
    ACS Nano; 2010 Jun; 4(6):3123-30. PubMed ID: 20527797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond laser direct writing of a 3D microcantilever on the tip of an optical fiber sensor for on-chip optofluidic sensing.
    Li C; Liu Y; Lang C; Zhang Y; Qu S
    Lab Chip; 2022 Sep; 22(19):3734-3743. PubMed ID: 36039614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid sensing capability of rolled-up tubular optical microcavities: a theoretical study.
    Zhao F; Zhan T; Huang G; Mei Y; Hu X
    Lab Chip; 2012 Oct; 12(19):3798-802. PubMed ID: 22878277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications.
    Harazim SM; Bolaños Quiñones VA; Kiravittaya S; Sanchez S; Schmidt OG
    Lab Chip; 2012 Aug; 12(15):2649-55. PubMed ID: 22739437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-access optical microcavities for lab-on-a-chip refractive index sensing.
    Trichet AA; Foster J; Omori NE; James D; Dolan PR; Hughes GM; Vallance C; Smith JM
    Lab Chip; 2014 Nov; 14(21):4244-9. PubMed ID: 25208130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses.
    Chin LK; Liu AQ; Lim CS; Lin CL; Ayi TC; Yap PH
    Biomicrofluidics; 2010 May; 4(2):. PubMed ID: 20697582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical fiber laser refractometer based on an open microcavity Mach-Zehnder interferometer with an ultra-low detection limit.
    Niu P; Jiang J; Wang S; Liu K; Ma Z; Zhang Y; Chen W; Liu T
    Opt Express; 2020 Oct; 28(21):30570-30585. PubMed ID: 33115055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities.
    Wang W; Zhou C; Zhang T; Chen J; Liu S; Fan X
    Lab Chip; 2015 Oct; 15(19):3862-9. PubMed ID: 26304622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D-cascade-microlens optofluidic chip for refractometry with adjustable sensitivity.
    Tang J; Qiu G; Zhang X; Wang J
    Lab Chip; 2021 Sep; 21(19):3784-3792. PubMed ID: 34581391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser processing for optofluidic fabrication.
    Sugioka K; Cheng Y
    Lab Chip; 2012 Oct; 12(19):3576-89. PubMed ID: 22820547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructured optical fiber for multichannel sensing based on Fano resonance of the whispering gallery modes.
    Lin W; Zhang H; Chen SC; Liu B; Liu YG
    Opt Express; 2017 Jan; 25(2):994-1004. PubMed ID: 28157993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing.
    Madani A; Harazim SM; Bolaños Quiñones VA; Kleinert M; Finn A; Ghareh Naz ES; Ma L; Schmidt OG
    Opt Lett; 2017 Feb; 42(3):486-489. PubMed ID: 28146508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection.
    Crespi A; Gu Y; Ngamsom B; Hoekstra HJ; Dongre C; Pollnau M; Ramponi R; van den Vlekkert HH; Watts P; Cerullo G; Osellame R
    Lab Chip; 2010 May; 10(9):1167-73. PubMed ID: 20390136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity.
    Gong Y; Zhang C; Liu QF; Wu Y; Wu H; Rao Y; Peng GD
    Opt Express; 2015 Feb; 23(3):3762-9. PubMed ID: 25836228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis.
    Surdo S; Merlo S; Carpignano F; Strambini LM; Trono C; Giannetti A; Baldini F; Barillaro G
    Lab Chip; 2012 Nov; 12(21):4403-15. PubMed ID: 22930245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining.
    Song J; Lin J; Tang J; Liao Y; He F; Wang Z; Qiao L; Sugioka K; Cheng Y
    Opt Express; 2014 Jun; 22(12):14792-802. PubMed ID: 24977574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Sub-Micron Polymer Waveguides through Two-Photon Polymerization in Polydimethylsiloxane.
    Panusa G; Pu Y; Wang J; Moser C; Psaltis D
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33114700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate.
    Wu D; Niu LG; Wu SZ; Xu J; Midorikawa K; Sugioka K
    Lab Chip; 2015 Mar; 15(6):1515-23. PubMed ID: 25622687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.