These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27752694)

  • 1. Divergence of the third harmonic stress response to oscillatory strain approaching the glass transition.
    Seyboldt R; Merger D; Coupette F; Siebenbürger M; Ballauff M; Wilhelm M; Fuchs M
    Soft Matter; 2016 Nov; 12(43):8825-8832. PubMed ID: 27752694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.
    Brader JM; Siebenbürger M; Ballauff M; Reinheimer K; Wilhelm M; Frey SJ; Weysser F; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061401. PubMed ID: 21230671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear rheology of glass-forming colloidal dispersions: transient stress-strain relations from anisotropic mode coupling theory and thermosensitive microgels.
    Amann CM; Siebenbürger M; Ballauff M; Fuchs M
    J Phys Condens Matter; 2015 May; 27(19):194121. PubMed ID: 25922898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear viscoelasticity of entangled wormlike micellar fluid under large-amplitude oscillatory shear: role of elastic Taylor-Couette instability.
    Majumdar S; Sood AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062314. PubMed ID: 25019783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large amplitude oscillatory shear study of a colloidal gel near the critical state.
    Suman K; Shanbhag S; Joshi YM
    J Chem Phys; 2023 Feb; 158(5):054907. PubMed ID: 36754789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of growing spatial correlations at the glass transition from nonlinear response experiments.
    Crauste-Thibierge C; Brun C; Ladieu F; L'Hôte D; Biroli G; Bouchaud JP
    Phys Rev Lett; 2010 Apr; 104(16):165703. PubMed ID: 20482067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous viscoelasticity near the isotropic-nematic phase transition in liquid crystals.
    Jose PP; Bagchi B
    J Chem Phys; 2004 Oct; 121(14):6978-85. PubMed ID: 15473759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-field-crystal modeling of glass-forming liquids: spanning time scales during vitrification, aging, and deformation.
    Berry J; Grant M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062303. PubMed ID: 25019772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain Pattern in Supercooled Liquids.
    Illing B; Fritschi S; Hajnal D; Klix C; Keim P; Fuchs M
    Phys Rev Lett; 2016 Nov; 117(20):208002. PubMed ID: 27886484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous nonlinear response of glassy liquids: general arguments and a mode-coupling approach.
    Tarzia M; Biroli G; Lefèvre A; Bouchaud JP
    J Chem Phys; 2010 Feb; 132(5):054501. PubMed ID: 20136316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gel-like elasticity in glass-forming side-chain liquid-crystal polymers.
    Pozo O; Collin D; Finkelmann H; Rogez D; Martinoty P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031801. PubMed ID: 19905137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Third harmonics nonlinear susceptibility in supercooled liquids: a comparison to the box model.
    Brun C; Crauste-Thibierge C; Ladieu F; L'Hôte D
    J Chem Phys; 2011 May; 134(19):194507. PubMed ID: 21599073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Bauschinger effect in supercooled melts under shear: results from mode coupling theory and molecular dynamics simulations.
    Frahsa F; Bhattacharjee AK; Horbach J; Fuchs M; Voigtmann T
    J Chem Phys; 2013 Mar; 138(12):12A513. PubMed ID: 23556764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic nonlinearities in the mechanics of hard sphere suspensions.
    Kumar MA; Ewoldt RH; Zukoski CF
    Soft Matter; 2016 Sep; 12(36):7655-62. PubMed ID: 27530863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural change and dynamics of colloidal gels under oscillatory shear flow.
    Park JD; Ahn KH; Lee SJ
    Soft Matter; 2015 Dec; 11(48):9262-72. PubMed ID: 26524658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic nonlinearity of lung tissue: frequency dependence and harmonic distortion.
    Romero PV; Faffe DS; Cañete C
    J Appl Physiol (1985); 2011 Aug; 111(2):420-6. PubMed ID: 21565986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain softening, yielding, and shear thinning in glassy colloidal suspensions.
    Kobelev V; Schweizer KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021401. PubMed ID: 15783323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain-rate frequency superposition in large-amplitude oscillatory shear.
    Kalelkar C; Lele A; Kamble S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031401. PubMed ID: 20365730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear stresses of colloidal dispersions at the glass transition in equilibrium and in flow.
    Crassous JJ; Siebenbürger M; Ballauff M; Drechsler M; Hajnal D; Henrich O; Fuchs M
    J Chem Phys; 2008 May; 128(20):204902. PubMed ID: 18513043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural origin of excitations in a colloidal glass-former.
    Ganapathi D; Sood AK; Ganapathy R
    J Chem Phys; 2022 Jun; 156(21):214502. PubMed ID: 35676137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.