These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 27753024)

  • 41. Integration of Lupinus angustifolius L. (narrow-leafed lupin) genome maps and comparative mapping within legumes.
    Wyrwa K; Książkiewicz M; Szczepaniak A; Susek K; Podkowiński J; Naganowska B
    Chromosome Res; 2016 Sep; 24(3):355-78. PubMed ID: 27168155
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Epigenetic analyses and the distribution of repetitive DNA and resistance genes reveal the complexity of common bean (Phaseolus vulgaris L., Fabaceae) heterochromatin.
    Fonsêca A; Richard MM; Geffroy V; Pedrosa-Harand A
    Cytogenet Genome Res; 2014; 143(1-3):168-78. PubMed ID: 24752176
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methylation of the FSHD syndrome-linked subtelomeric repeat in normal and FSHD cell cultures and tissues.
    Tsien F; Sun B; Hopkins NE; Vedanarayanan V; Figlewicz D; Winokur S; Ehrlich M
    Mol Genet Metab; 2001 Nov; 74(3):322-31. PubMed ID: 11708861
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Fluorescent in situ hybridization of enriched SFA-DNA on pachytene chromosomes in mouse].
    Yi N; Lin YK; Sang YC; Ni ZM; Shi LJ
    Shi Yan Sheng Wu Xue Bao; 1994 Dec; 27(4):515-21. PubMed ID: 7879578
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Comparative FISH analysis of C-positive blocks of centromeric chromosomal regions of pygmy wood mice Sylvaemus uralensis (Rodentia, Muridae)].
    Karamysheva TV; Bogdanov AS; Kartavtseva IV; Likhoshvaĭ TV; Bochkarev MN; Kolcheva NE; Marochkina VV; Rubtsov NB
    Genetika; 2010 Jun; 46(6):805-16. PubMed ID: 20734773
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-resolution organization of mouse centromeric and pericentromeric DNA.
    Kuznetsova I; Podgornaya O; Ferguson-Smith MA
    Cytogenet Genome Res; 2006; 112(3-4):248-55. PubMed ID: 16484780
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The centromeric heterochromatin of Costus spiralis: poorly methylated and transiently acetylated during meiosis.
    Feitoza L; Guerra M
    Cytogenet Genome Res; 2011; 135(2):160-6. PubMed ID: 21934285
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA.
    Lam AL; Boivin CD; Bonney CF; Rudd MK; Sullivan BA
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4186-91. PubMed ID: 16537506
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Large tandem repeats of mesocricetus a uratus in silico and in situ].
    Miheev DY; Podgornaya OI; Ostromyshenskii DI
    Tsitologiia; 2015; 57(2):95-101. PubMed ID: 26035966
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epigenetic regulation of heterochromatic DNA stability.
    Peng JC; Karpen GH
    Curr Opin Genet Dev; 2008 Apr; 18(2):204-11. PubMed ID: 18372168
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sequence analysis of cell-free DNA derived from cultured human bone osteosarcoma (143B) cells.
    Bronkhorst AJ; Wentzel JF; Ungerer V; Peters DL; Aucamp J; de Villiers EP; Holdenrieder S; Pretorius PJ
    Tumour Biol; 2018 Sep; 40(9):1010428318801190. PubMed ID: 30261820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discrimination of DNA duplexes with matched and mismatched tandem repeats by T4 endonuclease VII.
    Surdi GA; Yaar R; Smith CL
    Genet Anal; 1999 Feb; 14(5-6):177-9. PubMed ID: 10084111
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tandem repeats in the long-read sequencing era.
    Nat Rev Genet; 2024 Jul; 25(7):449. PubMed ID: 38898331
    [No Abstract]   [Full Text] [Related]  

  • 54. The repetitive structure of DNA clamps: An overlooked protein tandem repeat.
    Arrías PN; Monzon AM; Clementel D; Mozaffari S; Piovesan D; Kajava AV; Tosatto SCE
    J Struct Biol; 2023 Sep; 215(3):108001. PubMed ID: 37467824
    [TBL] [Abstract][Full Text] [Related]  

  • 55. TReSR: A PCR-compatible DNA sequence design method for engineering proteins containing tandem repeats.
    Davey JA; Goto NK
    PLoS One; 2023; 18(4):e0281228. PubMed ID: 37043448
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tandem repeat variation of human centromeres.
    Minton K
    Nat Rev Genet; 2024 Jul; 25(7):455. PubMed ID: 38720023
    [No Abstract]   [Full Text] [Related]  

  • 57. Tandem Repeat DNA Provides Many Cytological Markers for Hybrid Zone Analysis in Two Subspecies of the Grasshopper
    Navarro-Domínguez B; Cabrero J; López-León MD; Ruiz-Ruano FJ; Pita M; Bella JL; Camacho JPM
    Genes (Basel); 2023 Feb; 14(2):. PubMed ID: 36833324
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reduction in the structural instability of cloned eukaryotic tandem-repeat DNA by low-temperature culturing of host bacteria.
    Thapana W; Sujiwattanarat P; Srikulnath K; Hirai H; Koga A
    Genet Res (Camb); 2014 Oct; 96():e13. PubMed ID: 25578068
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tandem repeats in giant archaeal Borg elements undergo rapid evolution and create new intrinsically disordered regions in proteins.
    Schoelmerich MC; Sachdeva R; West-Roberts J; Waldburger L; Banfield JF
    PLoS Biol; 2023 Jan; 21(1):e3001980. PubMed ID: 36701369
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sex, Age, and Bodyweight as Determinants of Extracellular DNA in the Plasma of Mice: A Cross-Sectional Study.
    Janovičová Ľ; Konečná B; Vokálová L; Lauková L; Vlková B; Celec P
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31454899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.