These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27753235)

  • 1. Nanopore Sensing in Aqueous Two-Phase System: Simultaneous Enhancement of Signal and Translocation Time via Conformal Coating.
    Lee SJ; Kang JY; Choi W; Kwak R
    Small; 2017 Jan; 13(3):. PubMed ID: 27753235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle transport in conical-shaped nanopores.
    Lan WJ; Holden DA; Zhang B; White HS
    Anal Chem; 2011 May; 83(10):3840-7. PubMed ID: 21495727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of Zeta Potential via Nanoparticle Translocation Velocities through a Tunable Nanopore: Using DNA-modified Particles as an Example.
    Blundell EL; Vogel R; Platt M
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27805605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing.
    Peng R; Li D
    Nanoscale; 2017 May; 9(18):5964-5974. PubMed ID: 28440838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of off-axis translocation through nanopores on the determination of shape and volume estimates for individual particles.
    Ying C; Houghtaling J; Mayer M
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35320779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanoparticle translocation dynamics and electrical detection of single particle diffusion using solid-state nanopores.
    Goyal G; Freedman KJ; Kim MJ
    Anal Chem; 2013 Sep; 85(17):8180-7. PubMed ID: 23885645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle detection on microfluidic chips by differential resistive pulse sensing (RPS) method.
    Peng R; Li D
    Talanta; 2018 Jul; 184():418-428. PubMed ID: 29674063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing.
    Darvish A; Goyal G; Aneja R; Sundaram RV; Lee K; Ahn CW; Kim KB; Vlahovska PM; Kim MJ
    Nanoscale; 2016 Aug; 8(30):14420-31. PubMed ID: 27321911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Nanoparticle Sensing in a Highly Viscous Nanopore.
    Kawaguchi T; Tsutsui M; Murayama S; Leong IW; Yokota K; Komoto Y; Taniguchi M
    Small Methods; 2024 May; ():e2301523. PubMed ID: 38725330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining dynamic Monte Carlo with machine learning to study nanoparticle translocation.
    Vieira LF; Weinhofer AC; Oltjen WC; Yu C; de Souza Mendes PR; Hore MJA
    Soft Matter; 2022 Jul; 18(28):5218-5229. PubMed ID: 35770621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of target-probe oligonucleotide hybridization using synthetic nanopore resistive pulse sensing.
    Booth MA; Vogel R; Curran JM; Harbison S; Travas-Sejdic J
    Biosens Bioelectron; 2013 Jul; 45():136-40. PubMed ID: 23455053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing.
    Blundell EL; Vogel R; Platt M
    Langmuir; 2016 Feb; 32(4):1082-90. PubMed ID: 26757237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct numerical simulation of electrokinetic translocation of a cylindrical particle through a nanopore using a Poisson-Boltzmann approach.
    Ai Y; Qian S
    Electrophoresis; 2011 Apr; 32(9):996-1005. PubMed ID: 21455912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle Trajectory-Dependent Ionic Current Blockade in Low-Aspect-Ratio Pores.
    Tsutsui M; He Y; Yokota K; Arima A; Hongo S; Taniguchi M; Washio T; Kawai T
    ACS Nano; 2016 Jan; 10(1):803-9. PubMed ID: 26641133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-nanoparticle detection using a low-aspect-ratio pore.
    Tsutsui M; Hongo S; He Y; Taniguchi M; Gemma N; Kawai T
    ACS Nano; 2012 Apr; 6(4):3499-505. PubMed ID: 22424475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Ionic Current and Potential Detection of Nanoparticles by a Multifunctional Nanopipette.
    Panday N; Qian G; Wang X; Chang S; Pandey P; He J
    ACS Nano; 2016 Dec; 10(12):11237-11248. PubMed ID: 27936572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sizing Individual Au Nanoparticles in Solution with Sub-Nanometer Resolution.
    German SR; Hurd TS; White HS; Mega TL
    ACS Nano; 2015 Jul; 9(7):7186-94. PubMed ID: 26083098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital quantification of rolling circle amplified single DNA molecules in a resistive pulse sensing nanopore.
    Kühnemund M; Nilsson M
    Biosens Bioelectron; 2015 May; 67():11-7. PubMed ID: 25000851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bidirectional transfer of particles across liquid-liquid interface under electric pulse.
    Li M; Li D
    J Colloid Interface Sci; 2020 Feb; 560():436-446. PubMed ID: 31677817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.