These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2775410)

  • 1. Stabilization of actin filaments by ATP and inorganic phosphate.
    Dancker P; Fischer S
    Z Naturforsch C J Biosci; 1989; 44(7-8):698-704. PubMed ID: 2775410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the Cooperative Nature of ATP Hydrolysis in Actin Filaments.
    Katkar HH; Davtyan A; Durumeric AEP; Hocky GM; Schramm AC; De La Cruz EM; Voth GA
    Biophys J; 2018 Oct; 115(8):1589-1602. PubMed ID: 30249402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of toxins on inorganic phosphate release during actin polymerization.
    Vig A; Ohmacht R; Jámbor E; Bugyi B; Nyitrai M; Hild G
    Eur Biophys J; 2011 May; 40(5):619-26. PubMed ID: 21203885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phalloidin reduces the release of inorganic phosphate during actin polymerization.
    Dancker P; Hess L
    Biochim Biophys Acta; 1990 Aug; 1035(2):197-200. PubMed ID: 2393669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actin polymerization and ATP hydrolysis.
    Carlier MF
    Adv Biophys; 1990; 26():51-73. PubMed ID: 2082729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-affinity binding of cytochalasin B to the B-end of F-actin loses its inhibitory effect on subunit exchange when the bound nucleotide is ADP.
    Suzuki N; Mihashi K
    J Biochem; 1991 Oct; 110(4):514-9. PubMed ID: 1778974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random copolymerization of ATP-actin and ADP-actin.
    Ohm T; Wegner A
    Biochemistry; 1991 Nov; 30(47):11193-7. PubMed ID: 1958656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actin polymerization: regulation by divalent metal ion and nucleotide binding, ATP hydrolysis and binding of myosin.
    Carlier MF; Valentin-Ranc C; Combeau C; Fievez S; Pantoloni D
    Adv Exp Med Biol; 1994; 358():71-81. PubMed ID: 7801813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for actin polymerization and the kinetic effects of ATP hydrolysis.
    Pantaloni D; Hill TL; Carlier MF; Korn ED
    Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7207-11. PubMed ID: 3864156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin polymerization and ATP hydrolysis.
    Korn ED; Carlier MF; Pantaloni D
    Science; 1987 Oct; 238(4827):638-44. PubMed ID: 3672117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the sliding velocity of actin filaments in the presence of ATP analogue: AMP-PNP.
    Sakamaki J; Honda H; Imai E; Hatori K; Shimada K; Matsuno K
    Biophys Chem; 2003 Aug; 105(1):59-66. PubMed ID: 12932579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evidence for ADP-Pi-F-actin as the major intermediate in ATP-actin polymerization. Rate of dissociation of Pi from actin filaments.
    Carlier MF; Pantaloni D
    Biochemistry; 1986 Dec; 25(24):7789-92. PubMed ID: 3801442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ATP removal and inorganic phosphate on length redistribution of sheared actin filament populations. Evidence for a mechanism of end-to-end annealing.
    Rickard JE; Sheterline P
    J Mol Biol; 1988 Jun; 201(4):675-81. PubMed ID: 3172199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential dynamic behavior of actin filaments containing tightly-bound Ca2+ or Mg2+ in the presence of myosin heads actively hydrolyzing ATP.
    Rebello CA; Ludescher RD
    Biochemistry; 1999 Oct; 38(40):13288-95. PubMed ID: 10529203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High microfilament concentration results in barbed-end ADP caps.
    Dufort PA; Lumsden CJ
    Biophys J; 1993 Nov; 65(5):1757-66. PubMed ID: 8298009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic view into Plasmodium actin polymerization, ATP hydrolysis, and fragmentation.
    Kumpula EP; Lopez AJ; Tajedin L; Han H; Kursula I
    PLoS Biol; 2019 Jun; 17(6):e3000315. PubMed ID: 31199804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The enhanced ATPase activity of glutathione-substituted actin provides a quantitative approach to filament stabilization.
    Drewes G; Faulstich H
    J Biol Chem; 1990 Feb; 265(6):3017-21. PubMed ID: 2137454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that F-actin can hydrolyze ATP independent of monomer-polymer end interactions.
    Brenner SL; Korn ED
    J Biol Chem; 1984 Feb; 259(3):1441-6. PubMed ID: 6693414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive and Tensile Deformations Alter ATP Hydrolysis and Phosphate Release Rates in Actin Filaments.
    Mani S; Katkar HH; Voth GA
    J Chem Theory Comput; 2021 Mar; 17(3):1900-1913. PubMed ID: 33596075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A change in actin conformation associated with filament instability after Pi release.
    Belmont LD; Orlova A; Drubin DG; Egelman EH
    Proc Natl Acad Sci U S A; 1999 Jan; 96(1):29-34. PubMed ID: 9874766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.