These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2775410)

  • 41. The role of MeH73 in actin polymerization and ATP hydrolysis.
    Nyman T; Schüler H; Korenbaum E; Schutt CE; Karlsson R; Lindberg U
    J Mol Biol; 2002 Apr; 317(4):577-89. PubMed ID: 11955010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Actin filaments undergo limited subunit exchange in physiological salt conditions.
    Pardee JD; Simpson PA; Stryer L; Spudich JA
    J Cell Biol; 1982 Aug; 94(2):316-24. PubMed ID: 7202009
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism of interaction of Dictyostelium severin with actin filaments.
    Yamamoto K; Pardee JD; Reidler J; Stryer L; Spudich JA
    J Cell Biol; 1982 Dec; 95(3):711-9. PubMed ID: 6897549
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exchange of 1,N6-etheno-ATP with actin-bound nucleotides as a tool for studying the steady-state exchange of subunits in F-actin solutions.
    Wang YL; Taylor DL
    Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5503-7. PubMed ID: 6946487
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure and dynamics of the actin filament.
    Guan JQ; Takamoto K; Almo SC; Reisler E; Chance MR
    Biochemistry; 2005 Mar; 44(9):3166-75. PubMed ID: 15736927
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural transitions of F-actin upon ATP hydrolysis at near-atomic resolution revealed by cryo-EM.
    Merino F; Pospich S; Funk J; Wagner T; Küllmer F; Arndt HD; Bieling P; Raunser S
    Nat Struct Mol Biol; 2018 Jun; 25(6):528-537. PubMed ID: 29867215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bound nucleotide can control the dynamic architecture of monomeric actin.
    Ali R; Zahm JA; Rosen MK
    Nat Struct Mol Biol; 2022 Apr; 29(4):320-328. PubMed ID: 35332323
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rotational dynamics of actin-bound intermediates of the myosin adenosine triphosphatase cycle in myofibrils.
    Berger CL; Thomas DD
    Biophys J; 1994 Jul; 67(1):250-61. PubMed ID: 7918993
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of the insertion of actin monomers between the barbed ends of actin filaments and barbed end-bound insertin.
    Gaertner A; Wegner A
    J Muscle Res Cell Motil; 1991 Feb; 12(1):27-36. PubMed ID: 2050808
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Purification of an ATP-dependent actin-binding protein from a lower eukaryote, Physarum polycephalum.
    Ishikawa R; Sasaki Y; Nakamura A; Takagi T; Kohama K
    Biochem Biophys Res Commun; 1995 Jul; 212(2):347-52. PubMed ID: 7626047
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dissociation of acto-H-meromyosin and that of acto-subfragment-1 induced by adenyl-5'-yl-imidodiphosphate: evidence for a ternary complex of F-actin, myosin head, and substrate.
    Inoue A; Tonomura Y
    J Biochem; 1980 Dec; 88(6):1643-51. PubMed ID: 6893984
    [No Abstract]   [Full Text] [Related]  

  • 52. Filament organization of the bacterial actin MreB is dependent on the nucleotide state.
    Pande V; Mitra N; Bagde SR; Srinivasan R; Gayathri P
    J Cell Biol; 2022 May; 221(5):. PubMed ID: 35377392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The bound nucleotide of actin.
    Cooke R
    J Supramol Struct; 1975; 3(2):146-53. PubMed ID: 127884
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails.
    Rosenblatt J; Agnew BJ; Abe H; Bamburg JR; Mitchison TJ
    J Cell Biol; 1997 Mar; 136(6):1323-32. PubMed ID: 9087446
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic heterogeneity of F-actin polymers. Further evidence that the elongation reaction may occur through condensation of the actin filaments with small aggregates.
    Grazi E; Magri E
    Biochem J; 1987 Dec; 248(3):721-5. PubMed ID: 3435480
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of actin with phalloidin: polymerization and stabilization of F-actin.
    Dancker P; Löw I; Hasselbach W; Wieland T
    Biochim Biophys Acta; 1975 Aug; 400(2):407-14. PubMed ID: 126084
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ATP-driven steady-state exchange of monomeric and filamentous actin from Dictyostelium discoideum.
    Simpson PA; Spudich JA
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4610-3. PubMed ID: 6933508
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modification of the interactions of myosin with actin and 5'-adenylyl imidodiphosphate by substitution of ethylene glycol for water.
    Marston SB; Tregear RT
    Biochem J; 1984 Jan; 217(1):169-77. PubMed ID: 6141791
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin.
    Rebello CA; Ludescher RD
    Biochemistry; 1998 Oct; 37(41):14529-38. PubMed ID: 9772181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulating actin-filament dynamics in vivo.
    Chen H; Bernstein BW; Bamburg JR
    Trends Biochem Sci; 2000 Jan; 25(1):19-23. PubMed ID: 10637608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.