These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27754348)

  • 61. A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles.
    Ni J; Wu L; Shi P; Yang SX
    Comput Intell Neurosci; 2017; 2017():9269742. PubMed ID: 28255297
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Influence of Integration Schemes and Maneuvers on the Initial Alignment and Calibration of AUVs: Observability and Degree of Observability Analyses.
    Frutuoso A; Silva FO; de Barros EA
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590976
    [TBL] [Abstract][Full Text] [Related]  

  • 63. H-SLAM: Rao-Blackwellized Particle Filter SLAM Using Hilbert Maps.
    Vallicrosa G; Ridao P
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29723975
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Autonomous Underwater Navigation and Optical Mapping in Unknown Natural Environments.
    Hernández JD; Istenič K; Gracias N; Palomeras N; Campos R; Vidal E; García R; Carreras M
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27472337
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Experimental Evaluation on Depth Control Using Improved Model Predictive Control for Autonomous Underwater Vehicle (AUVs).
    Yao F; Yang C; Liu X; Zhang M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30018268
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optimal Sensor Formation for 3D Cooperative Localization of AUVs Using Time Difference of Arrival (TDOA) Method.
    Bo X; Razzaqi AA; Wang X
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558311
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interoperability Among Unmanned Maritime Vehicles: Review and First In-field Experimentation.
    Costanzi R; Fenucci D; Manzari V; Micheli M; Morlando L; Terracciano D; Caiti A; Stifani M; Tesei A
    Front Robot AI; 2020; 7():91. PubMed ID: 33501258
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Underwater optical guiding and communication solution for the AUV and seafloor node.
    Chen Y; Duan Z; Zheng F; Guo Y; Xia Q
    Appl Opt; 2022 Aug; 61(24):7059-7070. PubMed ID: 36256322
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Design and implementation of a biomimetic turtle hydrofoil for an autonomous underwater vehicle.
    Font D; Tresanchez M; Siegentahler C; Pallejà T; Teixidó M; Pradalier C; Palacin J
    Sensors (Basel); 2011; 11(12):11168-87. PubMed ID: 22247660
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Active Fault Localization of Actuators on Torpedo-Shaped Autonomous Underwater Vehicles.
    Liu F; Long Y; Luo J; Pu H; Duan C; Zhong S
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33440899
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.
    Fischell EM; Schmidt H
    J Acoust Soc Am; 2015 Dec; 138(6):3773-84. PubMed ID: 26723332
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An AUV localization and path planning algorithm for terrain-aided navigation.
    Teng M; Ye L; Yuxin Z; Yanqing J; Zheng C; Qiang Z; Shuo X
    ISA Trans; 2020 Aug; 103():215-227. PubMed ID: 32336466
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Fault-Tolerant Steering Prototype for X-Rudder Underwater Vehicles.
    Wang W; Chen Y; Xia Y; Xu G; Zhang W; Wu H
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32218145
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Towards the Design and Implementation of an Image-Based Navigation System of an Autonomous Underwater Vehicle Combining a Color Recognition Technique and a Fuzzy Logic Controller.
    Lin YH; Yu CM; Wu CY
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204682
    [TBL] [Abstract][Full Text] [Related]  

  • 75. SAUV-A Bio-Inspired Soft-Robotic Autonomous Underwater Vehicle.
    Plum F; Labisch S; Dirks JH
    Front Neurorobot; 2020; 14():8. PubMed ID: 32153381
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Platinum-paper micromotors: an urchin-like nanohybrid catalyst for green monopropellant bubble-thrusters.
    Claussen JC; Daniele MA; Geder J; Pruessner M; Mäkinen AJ; Melde BJ; Twigg M; Verbarg JM; Medintz IL
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17837-47. PubMed ID: 25215632
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks.
    Khan JU; Cho HS
    Sensors (Basel); 2015 Aug; 15(8):19331-50. PubMed ID: 26287189
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Attention-Based Meta-Reinforcement Learning for Tracking Control of AUV With Time-Varying Dynamics.
    Jiang P; Song S; Huang G
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6388-6401. PubMed ID: 34029197
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Influences of temperature and salinity on holistic network performability of multi-AUV cooperative systems.
    Liang Q; Ou J; Xue Z; Ippolito C
    ISA Trans; 2019 Oct; 93():165-171. PubMed ID: 30979522
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Indirect adaptive output feedback control of a biorobotic AUV using pectoral-like mechanical fins.
    Naik MS; Singh SN; Mittal R
    Bioinspir Biomim; 2009 Jun; 4(2):026001. PubMed ID: 19276512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.