These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27754371)

  • 1. A Bio-Inspired Model-Based Approach for Context-Aware Post-WIMP Tele-Rehabilitation.
    López-Jaquero V; Rodríguez AC; Teruel MA; Montero F; Navarro E; Gonzalez P
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Envisioning future cognitive telerehabilitation technologies: a co-design process with clinicians.
    How TV; Hwang AS; Green REA; Mihailidis A
    Disabil Rehabil Assist Technol; 2017 Apr; 12(3):244-261. PubMed ID: 26746683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Home tele-rehabilitation for rheumatic patients: impact and satisfaction of care analysis.
    Pani D; Piga M; Barabino G; Crabolu M; Uras S; Mathieu A; Raffo L
    J Telemed Telecare; 2017 Feb; 23(2):292-300. PubMed ID: 26945913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolving dynamic self-adaptation policies of mHealth systems for long-term monitoring.
    Ballesteros J; Ayala I; Caro-Romero JR; Amor M; Fuentes L
    J Biomed Inform; 2020 Aug; 108():103494. PubMed ID: 32629044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A user interface model for navigation in virtual environments.
    Serolli Pinho M; Dias LL; Antunes Moreira CG; González Khodjaoghlanian E; Pizzini Becker G; Duarte LM
    Cyberpsychol Behav; 2002 Oct; 5(5):443-9. PubMed ID: 12448781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New methodologies for patients rehabilitation.
    Fardoun HM; Mashat AS; Lange B
    Methods Inf Med; 2015; 54(2):111-3. PubMed ID: 25797905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning from professionals: Exploring cognitive rehabilitation strategies for the definition of the functional requirements of a telerehabilitation platform.
    Rosso G; Frisiello A; Trizio M; Mosso CO; Bazzani M
    Comput Biol Med; 2018 Apr; 95():288-297. PubMed ID: 28859839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outcome Measures in Tele-Rehabilitation and Virtual Reality for Stroke Survivors: Protocol for a Scoping Review.
    Veras M; Kairy D; Rogante M; Giacomozzi C
    Glob J Health Sci; 2015 May; 8(1):79-82. PubMed ID: 26234991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A qualitative study adopting a user-centered approach to design and validate a brain computer interface for cognitive rehabilitation for people with brain injury.
    Martin S; Armstrong E; Thomson E; Vargiu E; Solà M; Dauwalder S; Miralles F; Daly Lynn J
    Assist Technol; 2018; 30(5):233-241. PubMed ID: 28708963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding stroke telerehabilitation services to rural veterans: a qualitative study on patient experiences using the robotic stroke therapy delivery and monitoring system program.
    Cherry CO; Chumbler NR; Richards K; Huff A; Wu D; Tilghman LM; Butler A
    Disabil Rehabil Assist Technol; 2017 Jan; 12(1):21-27. PubMed ID: 26135221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient's home: study protocol of a randomized clinical trial.
    Kairy D; Veras M; Archambault P; Hernandez A; Higgins J; Levin MF; Poissant L; Raz A; Kaizer F
    Contemp Clin Trials; 2016 Mar; 47():49-53. PubMed ID: 26655433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cardiac telerehabilitation in patients with coronary artery disease using a personalised patient-centred web application: protocol for the SmartCare-CAD randomised controlled trial.
    Brouwers RW; Kraal JJ; Traa SC; Spee RF; Oostveen LM; Kemps HM
    BMC Cardiovasc Disord; 2017 Jan; 17(1):46. PubMed ID: 28143388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Design Method of Tele-Rehabilitation Platforms for Post-Stroke Patients Based on Consumer Technology.
    Arrigoni A; Cumetti M; Greco A; Soliveri L; Vitali A
    Stud Health Technol Inform; 2021 May; 279():46-53. PubMed ID: 33965918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise recognition for Kinect-based telerehabilitation.
    Antón D; Goñi A; Illarramendi A
    Methods Inf Med; 2015; 54(2):145-55. PubMed ID: 25301322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Telerehabilitation System for the Selection, Evaluation and Remote Management of Therapies.
    Anton D; Berges I; Bermúdez J; Goñi A; Illarramendi A
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29738442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Requirements for a (Tele-) Rehabilitation Platform: Results from a Participatory Process.
    Krainer D; Wohofsky L; Schubert P
    Stud Health Technol Inform; 2022 May; 293():224-231. PubMed ID: 35592986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor tele-rehabilitation in post-stroke patients.
    Piron L; Tonin P; Trivello E; Battistin L; Dam M
    Med Inform Internet Med; 2004 Jun; 29(2):119-25. PubMed ID: 15370992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Telerehabilitation approach for patients with hand impairment.
    Staszuk A; Wiatrak B; Tadeusiewicz R; Karuga-Kuźniewska E; Rybak Z
    Acta Bioeng Biomech; 2016; 18(4):55-62. PubMed ID: 28133379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time 3D avatars for tele-rehabilitation in virtual reality.
    Kurillo G; Koritnik T; Bajd T; Bajcsy R
    Stud Health Technol Inform; 2011; 163():290-6. PubMed ID: 21335807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intelligent Context-Aware and Adaptive Interface for Mobile LBS.
    Feng J; Liu Y
    Comput Intell Neurosci; 2015; 2015():489793. PubMed ID: 26457077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.