BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27754390)

  • 1. Mitoxantrone-Surfactant Interactions: A Physicochemical Overview.
    Enache M; Toader AM; Enache MI
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27754390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral studies on the molecular interaction of anticancer drug mitoxantrone with CTAB micelles.
    Enache M; Volanschi E
    J Pharm Sci; 2011 Feb; 100(2):558-65. PubMed ID: 20669332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic investigations of the molecular interaction of anticancer drug mitoxantrone with non-ionic surfactant micelles.
    Enache M; Volanschi E
    J Pharm Pharmacol; 2012 May; 64(5):688-96. PubMed ID: 22471364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled spectral and electrochemical evaluation of the anticancer drug mitoxantrone-sodium dodecyl sulfate interaction.
    Enache M; Anghelache I; Volanschi E
    Int J Pharm; 2010 May; 390(2):100-6. PubMed ID: 20219654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic Investigation of the Interaction of the Anticancer Drug Mitoxantrone with Sodium Taurodeoxycholate (NaTDC) and Sodium Taurocholate (NaTC) Bile Salts.
    Enache M; Toader AM; Neacsu V; Ionita G; Enache MI
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28657593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled micellar clusters based on Triton-X-family surfactants for enhanced solubilization, encapsulation, proteins permeability control, and anticancer drug delivery.
    Solomonov AV; Marfin YS; Rumyantsev EV; Ragozin E; Zahavi TS; Gellerman G; Tesler AB; Muench F; Kumagai A; Miyawaki A
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():794-804. PubMed ID: 30889754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin E succinate-conjugated F68 micelles for mitoxantrone delivery in enhancing anticancer activity.
    Liu Y; Xu Y; Wu M; Fan L; He C; Wan JB; Li P; Chen M; Li H
    Int J Nanomedicine; 2016; 11():3167-78. PubMed ID: 27471384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of electrostatic and hydrophobic forces in the interaction of ionic dyes with charged micelles.
    Freire S; Bordello J; Granadero D; Al-Soufi W; Novo M
    Photochem Photobiol Sci; 2010 May; 9(5):687-96. PubMed ID: 20442928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-surfactant interactions: a tale of many states.
    Otzen D
    Biochim Biophys Acta; 2011 May; 1814(5):562-91. PubMed ID: 21397738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partitioning of anticancer drug 5-fluorouracil in micellar media explored by physicochemical properties and energetics of interactions: Quantitative insights for implications in drug delivery.
    Dasgupta M; Judy E; Kishore N
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110730. PubMed ID: 31917060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects.
    Schreier S; Malheiros SV; de Paula E
    Biochim Biophys Acta; 2000 Nov; 1508(1-2):210-34. PubMed ID: 11090827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitoxantrone, More than Just Another Topoisomerase II Poison.
    Evison BJ; Sleebs BE; Watson KG; Phillips DR; Cutts SM
    Med Res Rev; 2016 Mar; 36(2):248-99. PubMed ID: 26286294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The modulation by xanthines of the DNA-damaging effect of polycyclic aromatic agents. Part II. The stacking complexes of caffeine with doxorubicin and mitoxantrone.
    Piosik J; Zdunek M; Kapuscinski J
    Biochem Pharmacol; 2002 Feb; 63(4):635-46. PubMed ID: 11992631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the micellar properties of Quinacrine 2HCl and its binding with surfactants and human serum albumin.
    Usman M; Siddiq M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Sep; 113():182-90. PubMed ID: 23727671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics study of micelles properties according to their size.
    Lebecque S; Crowet JM; Nasir MN; Deleu M; Lins L
    J Mol Graph Model; 2017 Mar; 72():6-15. PubMed ID: 27992815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-casein-based nanovehicles for oral delivery of chemotherapeutic drugs: drug-protein interactions and mitoxantrone loading capacity.
    Shapira A; Markman G; Assaraf YG; Livney YD
    Nanomedicine; 2010 Aug; 6(4):547-55. PubMed ID: 20100598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer micelle assisted transport and delivery of model hydrophilic components inside a biological lipid vesicle: a coarse-grain simulation study.
    Srinivas G; Mohan RV; Kelkar AD
    J Phys Chem B; 2013 Oct; 117(40):12095-104. PubMed ID: 23952604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surfactant mixing on partitioning of model hydrophobic drug, naproxen, between aqueous and micellar phases.
    Bhat PA; Rather GM; Dar AA
    J Phys Chem B; 2009 Jan; 113(4):997-1006. PubMed ID: 19123827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy.
    Li Z; Cai Y; Zhao Y; Yu H; Zhou H; Chen M
    Int J Nanomedicine; 2017; 12():6595-6604. PubMed ID: 28919756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigation of interactions of new potential anticancer drugs with DNA and non-ionic micelles.
    Mazzoli A; Spalletti A; Carlotti B; Emiliani C; Fortuna CG; Urbanelli L; Tarpani L; Germani R
    J Phys Chem B; 2015 Jan; 119(4):1483-95. PubMed ID: 25545705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.