These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 27754394)
1. Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties. Iacovita C; Florea A; Dudric R; Pall E; Moldovan AI; Tetean R; Stiufiuc R; Lucaciu CM Molecules; 2016 Oct; 21(10):. PubMed ID: 27754394 [TBL] [Abstract][Full Text] [Related]
2. Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles. Castellanos-Rubio I; Rodrigo I; Olazagoitia-Garmendia A; Arriortua O; Gil de Muro I; Garitaonandia JS; Bilbao JR; Fdez-Gubieda ML; Plazaola F; Orue I; Castellanos-Rubio A; Insausti M ACS Appl Mater Interfaces; 2020 Jun; 12(25):27917-27929. PubMed ID: 32464047 [TBL] [Abstract][Full Text] [Related]
3. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells. Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952 [TBL] [Abstract][Full Text] [Related]
4. Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process. Iacovita C; Florea A; Scorus L; Pall E; Dudric R; Moldovan AI; Stiufiuc R; Tetean R; Lucaciu CM Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31635415 [TBL] [Abstract][Full Text] [Related]
5. Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment. Jeon S; Park BC; Lim S; Yoon HY; Jeon YS; Kim BS; Kim YK; Kim K ACS Appl Mater Interfaces; 2020 Jul; 12(30):33483-33491. PubMed ID: 32614594 [TBL] [Abstract][Full Text] [Related]
6. The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles. Fizesan I; Iacovita C; Pop A; Kiss B; Dudric R; Stiufiuc R; Lucaciu CM; Loghin F Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959431 [TBL] [Abstract][Full Text] [Related]
7. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model. Shah RR; Dombrowsky AR; Paulson AL; Johnson MP; Nikles DE; Brazel CS Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():18-29. PubMed ID: 27523991 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Mahdavi M; Ahmad MB; Haron MJ; Namvar F; Nadi B; Rahman MZ; Amin J Molecules; 2013 Jun; 18(7):7533-48. PubMed ID: 23807578 [TBL] [Abstract][Full Text] [Related]
9. Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells. Calatayud MP; Soler E; Torres TE; Campos-Gonzalez E; Junquera C; Ibarra MR; Goya GF Sci Rep; 2017 Aug; 7(1):8627. PubMed ID: 28819156 [TBL] [Abstract][Full Text] [Related]
10. Novel kojic acid-polymer-based magnetic nanocomposites for medical applications. Hussein-Al-Ali SH; El Zowalaty ME; Hussein MZ; Ismail M; Dorniani D; Webster TJ Int J Nanomedicine; 2014; 9():351-62. PubMed ID: 24453486 [TBL] [Abstract][Full Text] [Related]
11. Preparation and Evaluation of Doxorubicin-Loaded PLA-PEG-FA Copolymer Containing Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Cancer Treatment: Combination Therapy with Hyperthermia and Chemotherapy. Khaledian M; Nourbakhsh MS; Saber R; Hashemzadeh H; Darvishi MH Int J Nanomedicine; 2020; 15():6167-6182. PubMed ID: 32922000 [TBL] [Abstract][Full Text] [Related]
12. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. Khandhar AP; Ferguson RM; Simon JA; Krishnan KM J Biomed Mater Res A; 2012 Mar; 100(3):728-37. PubMed ID: 22213652 [TBL] [Abstract][Full Text] [Related]
13. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. Albarqi HA; Wong LH; Schumann C; Sabei FY; Korzun T; Li X; Hansen MN; Dhagat P; Moses AS; Taratula O; Taratula O ACS Nano; 2019 Jun; 13(6):6383-6395. PubMed ID: 31082199 [TBL] [Abstract][Full Text] [Related]
14. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia. Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263 [TBL] [Abstract][Full Text] [Related]
15. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios. Gavilán H; Simeonidis K; Myrovali E; Mazarío E; Chubykalo-Fesenko O; Chantrell R; Balcells L; Angelakeris M; Morales MP; Serantes D Nanoscale; 2021 Oct; 13(37):15631-15646. PubMed ID: 34596185 [TBL] [Abstract][Full Text] [Related]
16. Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe Lemine OM; Algessair S; Madkhali N; Al-Najar B; El-Boubbou K Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770414 [TBL] [Abstract][Full Text] [Related]
17. Ognjanović M; Radović M; Mirković M; Prijović Ž; Puerto Morales MD; Čeh M; Vranješ-Đurić S; Antić B ACS Appl Mater Interfaces; 2019 Nov; 11(44):41109-41117. PubMed ID: 31610125 [TBL] [Abstract][Full Text] [Related]
18. The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles. Chang L; Liu XL; Di Fan D; Miao YQ; Zhang H; Ma HP; Liu QY; Ma P; Xue WM; Luo YE; Fan HM Int J Nanomedicine; 2016; 11():1175-85. PubMed ID: 27042065 [TBL] [Abstract][Full Text] [Related]
19. Multifunctional Fe₃O₄/alumina core/shell MNPs as photothermal agents for targeted hyperthermia of nosocomial and antibiotic-resistant bacteria. Yu TJ; Li PH; Tseng TW; Chen YC Nanomedicine (Lond); 2011 Oct; 6(8):1353-63. PubMed ID: 21651443 [TBL] [Abstract][Full Text] [Related]