These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 27754394)
21. Enhanced Intracellular Hyperthermia Efficiency by Magnetic Nanoparticles Modified with Nucleus and Mitochondria Targeting Peptides. Wang X; Zhou J; Chen B; Tang Z; Zhang J; Li L; Tang J J Nanosci Nanotechnol; 2016 Jun; 16(6):6560-6. PubMed ID: 27427753 [TBL] [Abstract][Full Text] [Related]
22. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells. Sadhasivam S; Savitha S; Wu CJ; Lin FH; Stobiński L Int J Pharm; 2015 Mar; 480(1-2):8-14. PubMed ID: 25601197 [TBL] [Abstract][Full Text] [Related]
23. In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting. Mojica Pisciotti ML; Lima E; Vasquez Mansilla M; Tognoli VE; Troiani HE; Pasa AA; Creczynski-Pasa TB; Silva AH; Gurman P; Colombo L; Goya GF; Lamagna A; Zysler RD J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):860-8. PubMed ID: 24458920 [TBL] [Abstract][Full Text] [Related]
24. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy. T S A; Lu YJ; Chen JP Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707876 [TBL] [Abstract][Full Text] [Related]
25. Comprehensive Toxicity Assessment of PEGylated Magnetic Nanoparticles for in vivo applications. Caro C; Egea-Benavente D; Polvillo R; Royo JL; Pernia Leal M; García-Martín ML Colloids Surf B Biointerfaces; 2019 May; 177():253-259. PubMed ID: 30763790 [TBL] [Abstract][Full Text] [Related]
27. Influence of the Aspect Ratio of Iron Oxide Nanorods on Hysteresis-Loss-Mediated Magnetic Hyperthermia. Sugumaran PJ; Yang Y; Wang Y; Liu X; Ding J ACS Appl Bio Mater; 2021 Jun; 4(6):4809-4820. PubMed ID: 35007030 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Lanier OL; Korotych OI; Monsalve AG; Wable D; Savliwala S; Grooms NWF; Nacea C; Tuitt OR; Dobson J Int J Hyperthermia; 2019; 36(1):687-701. PubMed ID: 31340687 [No Abstract] [Full Text] [Related]
29. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications. Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092 [TBL] [Abstract][Full Text] [Related]
30. Shape Tailored Magnetic Nanorings for Intracellular Hyperthermia Cancer Therapy. Dias CSB; Hanchuk TDM; Wender H; Shigeyosi WT; Kobarg J; Rossi AL; Tanaka MN; Cardoso MB; Garcia F Sci Rep; 2017 Nov; 7(1):14843. PubMed ID: 29093500 [TBL] [Abstract][Full Text] [Related]
31. Preparation and in vitro evaluation of doxorubicin-loaded Fe₃O₄ magnetic nanoparticles modified with biocompatible copolymers. Akbarzadeh A; Mikaeili H; Zarghami N; Mohammad R; Barkhordari A; Davaran S Int J Nanomedicine; 2012; 7():511-26. PubMed ID: 22334781 [TBL] [Abstract][Full Text] [Related]
33. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI). Cheng KK; Chan PS; Fan S; Kwan SM; Yeung KL; Wáng YX; Chow AH; Wu EX; Baum L Biomaterials; 2015 Mar; 44():155-72. PubMed ID: 25617135 [TBL] [Abstract][Full Text] [Related]
34. A systematic study of transfection efficiency and cytotoxicity in HeLa cells using iron oxide nanoparticles prepared with organic and inorganic bases. Calmon MF; de Souza AT; Candido NM; Raposo MI; Taboga S; Rahal P; Nery JG Colloids Surf B Biointerfaces; 2012 Dec; 100():177-84. PubMed ID: 22766295 [TBL] [Abstract][Full Text] [Related]
35. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Khot VM; Salunkhe AB; Thorat ND; Ningthoujam RS; Pawar SH Dalton Trans; 2013 Jan; 42(4):1249-58. PubMed ID: 23138108 [TBL] [Abstract][Full Text] [Related]
36. Purification, Characterization, and Assessment of Anticancer Activity of Iron Oxide Nanoparticles Biosynthesized by Novel Thermophilic Bacillus tequilensis ASFS1. Satarzadeh N; Shakibaie M; Forootanfar H; Amirheidari B J Basic Microbiol; 2024 Sep; 64(9):e2400153. PubMed ID: 38922993 [TBL] [Abstract][Full Text] [Related]
37. Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition. Dabbagh A; Hedayatnasab Z; Karimian H; Sarraf M; Yeong CH; Madaah Hosseini HR; Abu Kasim NH; Wong TW; Rahman NA Int J Hyperthermia; 2019; 36(1):104-114. PubMed ID: 30428737 [TBL] [Abstract][Full Text] [Related]
38. Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging. Pernia Leal M; Rivera-Fernández S; Franco JM; Pozo D; de la Fuente JM; García-Martín ML Nanoscale; 2015 Feb; 7(5):2050-9. PubMed ID: 25554363 [TBL] [Abstract][Full Text] [Related]
39. In Vitro Study of Tumor-Homing Peptide-Modified Magnetic Nanoparticles for Magnetic Hyperthermia. Zhou S; Tsutsumiuchi K; Imai R; Miki Y; Kondo A; Nakagawa H; Watanabe K; Ohtsuki T Molecules; 2024 Jun; 29(11):. PubMed ID: 38893510 [TBL] [Abstract][Full Text] [Related]
40. Asymmetric Assembling of Iron Oxide Nanocubes for Improving Magnetic Hyperthermia Performance. Niculaes D; Lak A; Anyfantis GC; Marras S; Laslett O; Avugadda SK; Cassani M; Serantes D; Hovorka O; Chantrell R; Pellegrino T ACS Nano; 2017 Dec; 11(12):12121-12133. PubMed ID: 29155560 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]