These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27754569)

  • 1. Post-Synthesis Stabilization of Germanosilicate Zeolites ITH, IWW, and UTL by Substitution of Ge for Al.
    Shamzhy MV; Eliašová P; Vitvarová D; Opanasenko MV; Firth DS; Morris RE
    Chemistry; 2016 Nov; 22(48):17377-17386. PubMed ID: 27754569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The assembly-disassembly-organization-reassembly mechanism for 3D-2D-3D transformation of germanosilicate IWW zeolite.
    Chlubná-Eliášová P; Tian Y; Pinar AB; Kubů M; Čejka J; Morris RE
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):7048-52. PubMed ID: 24825119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From double-four-ring germanosilicates to new zeolites: in silico investigation.
    Trachta M; Bludský O; Čejka J; Morris RE; Nachtigall P
    Chemphyschem; 2014 Oct; 15(14):2972-6. PubMed ID: 25048804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling Crystal Morphology of Anisotropic Zeolites with Elemental Composition.
    Veselý O; Shamzhy M; Roth WJ; Morris RE; Čejka J
    Cryst Growth Des; 2024 Mar; 24(6):2406-2414. PubMed ID: 38525100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of double four-ring units in germanosilicate ITQ-13 zeolite by solid-state NMR spectroscopy.
    Liu X; Chu Y; Wang Q; Wang W; Wang C; Xu J; Deng F
    Solid State Nucl Magn Reson; 2017 Oct; 87():1-9. PubMed ID: 28582643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Post-Synthesis Transformation of Germanosilicate Zeolites.
    Opanasenko M; Shamzhy M; Wang Y; Yan W; Nachtigall P; Čejka J
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19380-19389. PubMed ID: 32510709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Framework stabilization of Ge-rich zeolites via postsynthesis alumination.
    Gao F; Jaber M; Bozhilov K; Vicente A; Fernandez C; Valtchev V
    J Am Chem Soc; 2009 Nov; 131(45):16580-6. PubMed ID: 19848393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADOR zeolite with 12 × 8 × 8-ring pores derived from IWR germanosilicate.
    Yue Q; Kasneryk V; Mazur M; Abdi S; Zhou Y; Wheatley PS; Morris RE; Čejka J; Shamzhy M; Opanasenko M
    J Mater Chem A Mater; 2024 Jan; 12(2):802-812. PubMed ID: 38178865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of crystallization parameters for the synthesis of germanosilicate with UTL topology.
    Shvets OV; Zukal A; Kasian N; Zilková N; Cejka J
    Chemistry; 2008; 14(32):10134-40. PubMed ID: 18785677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse ADOR: reconstruction of UTL zeolite from layered IPC-1P.
    Veselý O; Eliášová P; Morris RE; Čejka J
    Mater Adv; 2021 Apr; 2(12):3862-3870. PubMed ID: 34223168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-synthesis treatment gives highly stable siliceous zeolites through the isomorphous substitution of silicon for germanium in germanosilicates.
    Xu H; Jiang JG; Yang B; Zhang L; He M; Wu P
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1355-9. PubMed ID: 24375782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realizing the Direct Synthesis of High Silica IWS Zeolite with Improved Hydrothermal Stability.
    Fu W; Hu W; Hu C; Wang Y; Ai J; Wang Z; Wang C; Yang W
    Inorg Chem; 2024 Sep; 63(36):16908-16917. PubMed ID: 39190605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct synthesis of hydrothermally stable Ge-IWR zeolites.
    Fu WH; Yuan Z; Wang Z; Wang Y; Yang W; He MY
    Dalton Trans; 2017 May; 46(20):6692-6699. PubMed ID: 28484777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Stable Extra-Large Pore and High-Silica Zeolite Derived from Ge-Rich Precursor.
    Zhao Y; Wu S; Wang J; Peng M; Xu H; Jiang J; Ma Y; Wu P
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318298. PubMed ID: 38240576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic performance of Metal-Organic-Frameworks vs. extra-large pore zeolite UTL in condensation reactions.
    Shamzhy M; Opanasenko M; Shvets O; Cejka J
    Front Chem; 2013; 1():11. PubMed ID: 24790940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of an Organic Template for Synthesizing ITR Zeolites under Ge-Free Conditions.
    Ma Y; Hu J; Fan K; Chen W; Han S; Wu Q; Ma Y; Zheng A; Kunkes E; De Baerdemaeker T; Parvulescu AN; Bottke N; Yokoi T; De Vos DE; Meng X; Xiao FS
    J Am Chem Soc; 2023 Aug; 145(31):17284-17291. PubMed ID: 37489934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vapour-phase-transport rearrangement technique for the synthesis of new zeolites.
    Kasneryk V; Shamzhy M; Zhou J; Yue Q; Mazur M; Mayoral A; Luo Z; Morris RE; Čejka J; Opanasenko M
    Nat Commun; 2019 Nov; 10(1):5129. PubMed ID: 31719520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ADOR mechanism for the synthesis of new zeolites.
    Eliášová P; Opanasenko M; Wheatley PS; Shamzhy M; Mazur M; Nachtigall P; Roth WJ; Morris RE; Čejka J
    Chem Soc Rev; 2015 Oct; 44(20):7177-206. PubMed ID: 25946705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural reconstruction of germanosilicate frameworks by controlled hydrogen reduction.
    Ma Y; Xu H; Liu X; Peng M; Mao W; Han L; Jiang J; Wu P
    Chem Commun (Camb); 2019 Feb; 55(13):1883-1886. PubMed ID: 30565587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Synthesis of An Aluminosilicate POS Zeolite with Intersecting 12×11×11-Member-Ring Pore Channels by Using a Designed Organic Structure-Directing Agent.
    Cai X; Zhao Y; Zhang J; Zi W; Tao S; Jiao F; Du H
    Chemistry; 2022 Jun; 28(35):e202201075. PubMed ID: 35445478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.