These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27754604)

  • 41. Ionic Liquid Mixture Electrolyte Matching Porous Carbon Electrodes for Supercapacitors.
    Zhao Y; Chen Y; Du Q; Zhuo K; Yang L; Sun D; Bai G
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cucurbit[6]uril-Derived Sub-4 nm Pores-Dominated Hierarchical Porous Carbon for Supercapacitors: Operating Voltage Expansion and Pore Size Matching.
    Qiu D; Li M; Kang C; Wei J; Wang F; Yang R
    Small; 2020 Oct; 16(39):e2002718. PubMed ID: 32830405
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies on Possible Ion-Confinement in Nanopore for Enhanced Supercapacitor Performance in 4V EMIBF
    Deng J; Li J; Xiao Z; Song S; Li L
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31766673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. From waste paper basket to solid state and Li-HEC ultracapacitor electrodes: a value added journey for shredded office paper.
    Puthusseri D; Aravindan V; Anothumakkool B; Kurungot S; Madhavi S; Ogale S
    Small; 2014 Nov; 10(21):4395-402. PubMed ID: 25044804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.
    Kim YJ; Yang CM; Park KC; Kaneko K; Kim YA; Noguchi M; Fujino T; Oyama S; Endo M
    ChemSusChem; 2012 Mar; 5(3):535-41. PubMed ID: 22378623
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel solid-state polymer electrolyte of colloidal crystal decorated with ionic-liquid polymer brush.
    Sato T; Morinaga T; Marukane S; Narutomi T; Igarashi T; Kawano Y; Ohno K; Fukuda T; Tsujii Y
    Adv Mater; 2011 Nov; 23(42):4868-72. PubMed ID: 21960484
    [No Abstract]   [Full Text] [Related]  

  • 47. A novel ionic liquid-metal complex electrolyte for a remarkable increase in the efficiency of dye-sensitized solar cells.
    Miao Q; Zhang S; Xu H; Zhang P; Li H
    Chem Commun (Camb); 2013 Aug; 49(62):6980-2. PubMed ID: 23802221
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of porosity enhancing agents on the electrochemical performance of high-energy ultracapacitor electrodes derived from peanut shell waste.
    Sylla NF; Ndiaye NM; Ngom BD; Momodu D; Madito MJ; Mutuma BK; Manyala N
    Sci Rep; 2019 Sep; 9(1):13673. PubMed ID: 31541191
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes.
    Van Aken KL; McDonough JK; Li S; Feng G; Chathoth SM; Mamontov E; Fulvio PF; Cummings PT; Dai S; Gogotsi Y
    J Phys Condens Matter; 2014 Jul; 26(28):284104. PubMed ID: 24920163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.
    Kim B; Chung H; Kim W
    Nanotechnology; 2012 Apr; 23(15):155401. PubMed ID: 22437007
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Supercapacitors based on self-assembled graphene organogel.
    Sun Y; Wu Q; Shi G
    Phys Chem Chem Phys; 2011 Oct; 13(38):17249-54. PubMed ID: 21879072
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Supercapacitive Properties of Micropore- and Mesopore-Rich Activated Carbon in Ionic-Liquid Electrolytes with Various Constituent Ions.
    Nguyen QD; Patra J; Hsieh CT; Li J; Dong QF; Chang JK
    ChemSusChem; 2019 Jan; 12(2):449-456. PubMed ID: 30548119
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of Biomass-Derived Carbon Induced by Cellular Respiration in Yeast for Supercapacitor Applications.
    Lian YM; Ni M; Zhou L; Chen RJ; Yang W
    Chemistry; 2018 Dec; 24(68):18068-18074. PubMed ID: 30280431
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid single-step synthesis of porous carbon from an agricultural waste for energy storage application.
    Chen W; Wang X; Liu C; Luo M; Yang P; Zhou X
    Waste Manag; 2020 Feb; 102():330-339. PubMed ID: 31711027
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
    Lian C; Liu H; Henderson D; Wu J
    J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4.
    Rock SE; Wu L; Crain DJ; Krishnan S; Roy D
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2075-84. PubMed ID: 23432452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Superior capacitive performance of hydrochar-based porous carbons in aqueous electrolytes.
    Fuertes AB; Sevilla M
    ChemSusChem; 2015 Mar; 8(6):1049-57. PubMed ID: 25677575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Construction of hierarchically porous biomass carbon using iodine as pore-making agent for energy storage.
    Luo X; Wang Y; Shen Z; Cui L; Wang Y; Li X
    J Colloid Interface Sci; 2021 Oct; 599():351-359. PubMed ID: 33962196
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.