These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27754651)

  • 1. Liquid Crystal Phase Transition in Epitaxial Monolayers of DNA-Functionalized Nanoparticle Superlattices.
    Pan S; Boon N; Olvera de la Cruz M
    ACS Nano; 2016 Nov; 10(11):9948-9956. PubMed ID: 27754651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices.
    Ross MB; Ku JC; Vaccarezza VM; Schatz GC; Mirkin CA
    Nat Nanotechnol; 2015 May; 10(5):453-8. PubMed ID: 25867942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epitaxial growth of DNA-assembled nanoparticle superlattices on patterned substrates.
    Hellstrom SL; Kim Y; Fakonas JS; Senesi AJ; Macfarlane RJ; Mirkin CA; Atwater HA
    Nano Lett; 2013; 13(12):6084-90. PubMed ID: 24206268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarization-Dependent Optical Response in Anisotropic Nanoparticle-DNA Superlattices.
    Sun L; Lin H; Park DJ; Bourgeois MR; Ross MB; Ku JC; Schatz GC; Mirkin CA
    Nano Lett; 2017 Apr; 17(4):2313-2318. PubMed ID: 28358518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Materials Engineering with DNA.
    McMillan JR; Hayes OG; Winegar PH; Mirkin CA
    Acc Chem Res; 2019 Jul; 52(7):1939-1948. PubMed ID: 31199115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices.
    Ross MB; Ku JC; Blaber MG; Mirkin CA; Schatz GC
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10292-7. PubMed ID: 26240356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific patterning of highly ordered nanocrystal superlattices through biomolecular surface confinement.
    Noh H; Choi C; Hung AM; Jin S; Cha JN
    ACS Nano; 2010 Sep; 4(9):5076-80. PubMed ID: 20718405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular and Chemically Responsive Oligonucleotide "Bonds" in Nanoparticle Superlattices.
    Barnaby SN; Thaner RV; Ross MB; Brown KA; Schatz GC; Mirkin CA
    J Am Chem Soc; 2015 Oct; 137(42):13566-71. PubMed ID: 26465067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroscopic and tunable nanoparticle superlattices.
    Zhang H; Wang W; Mallapragada S; Travesset A; Vaknin D
    Nanoscale; 2017 Jan; 9(1):164-171. PubMed ID: 27791213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Responsive Nanoparticle Superlattices with Tunable DNA Bonds.
    Zhu J; Kim Y; Lin H; Wang S; Mirkin CA
    J Am Chem Soc; 2018 Apr; 140(15):5061-5064. PubMed ID: 29624374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-mediated nanoparticle crystallization into Wulff polyhedra.
    Auyeung E; Li TI; Senesi AJ; Schmucker AL; Pals BC; de la Cruz MO; Mirkin CA
    Nature; 2014 Jan; 505(7481):73-7. PubMed ID: 24284632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA based strategy to nanoparticle superlattices.
    Mazid RR; Si KJ; Cheng W
    Methods; 2014 May; 67(2):215-26. PubMed ID: 24508551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitutable nanoparticle superlattices.
    Radha B; Senesi AJ; O'Brien MN; Wang MX; Auyeung E; Lee B; Mirkin CA
    Nano Lett; 2014; 14(4):2162-7. PubMed ID: 24641553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly and crystallization of hairy (f-star) and DNA-grafted nanocubes.
    Knorowski C; Travesset A
    J Am Chem Soc; 2014 Jan; 136(2):653-9. PubMed ID: 24325673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal nanoparticles trapped by liquid-crystal defect lines: a lattice Monte Carlo simulation.
    Jose R; Skačej G; Sastry VS; Žumer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032503. PubMed ID: 25314461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a C14 Frank-Kasper Phase in One-Size Gold Nanoparticle Superlattices.
    Hajiw S; Pansu B; Sadoc JF
    ACS Nano; 2015 Aug; 9(8):8116-21. PubMed ID: 26230645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topotactic interconversion of nanoparticle superlattices.
    Macfarlane RJ; Jones MR; Lee B; Auyeung E; Mirkin CA
    Science; 2013 Sep; 341(6151):1222-5. PubMed ID: 23970559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density-functional theory and Monte Carlo simulations of the phase behavior of a simple model liquid crystal.
    Giura S; Schoen M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022507. PubMed ID: 25215749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shaping Liquid Crystals with Gold Nanoparticles: Helical Assemblies with Tunable and Hierarchical Structures Via Thin-Film Cooperative Interactions.
    Bagiński M; Tupikowska M; González-Rubio G; Wójcik M; Lewandowski W
    Adv Mater; 2020 Jan; 32(1):e1904581. PubMed ID: 31729083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling structure and porosity in catalytic nanoparticle superlattices with DNA.
    Auyeung E; Morris W; Mondloch JE; Hupp JT; Farha OK; Mirkin CA
    J Am Chem Soc; 2015 Feb; 137(4):1658-62. PubMed ID: 25611764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.