These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1179 related articles for article (PubMed ID: 27754668)

  • 1. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.
    Beran GJ; Hartman JD; Heit YN
    Acc Chem Res; 2016 Nov; 49(11):2501-2508. PubMed ID: 27754668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How important is thermal expansion for predicting molecular crystal structures and thermochemistry at finite temperatures?
    Heit YN; Beran GJ
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Aug; 72(Pt 4):514-29. PubMed ID: 27484373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting finite-temperature properties of crystalline carbon dioxide from first principles with quantitative accuracy.
    Heit YN; Nanda KD; Beran GJO
    Chem Sci; 2016 Jan; 7(1):246-255. PubMed ID: 29861980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do Models beyond Hybrid Density Functionals Increase the Agreement with Experiment for Predicted NMR Chemical Shifts or Electric Field Gradient Tensors in Organic Solids?
    Iuliucci RJ; Hartman JD; Beran GJO
    J Phys Chem A; 2023 Mar; 127(12):2846-2858. PubMed ID: 36940431
    [No Abstract]   [Full Text] [Related]  

  • 5. Identifying pragmatic quasi-harmonic electronic structure approaches for modeling molecular crystal thermal expansion.
    McKinley JL; Beran GJO
    Faraday Discuss; 2018 Oct; 211(0):181-207. PubMed ID: 30027972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced NMR Discrimination of Pharmaceutically Relevant Molecular Crystal Forms through Fragment-Based Ab Initio Chemical Shift Predictions.
    Hartman JD; Day GM; Beran GJ
    Cryst Growth Des; 2016 Nov; 16(11):6479-6493. PubMed ID: 27829821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Description of Intra- and Intermolecular Interactions through Dispersion-Corrected Second-Order Møller-Plesset Perturbation Theory.
    Beran GJO; Greenwell C; Cook C; Řezáč J
    Acc Chem Res; 2023 Dec; 56(23):3525-3534. PubMed ID: 37963266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Polymorphic Molecular Crystals with Electronic Structure Theory.
    Beran GJ
    Chem Rev; 2016 May; 116(9):5567-613. PubMed ID: 27008426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio thermodynamic properties and their uncertainties for crystalline α-methanol.
    Červinka C; Beran GJO
    Phys Chem Chem Phys; 2017 Nov; 19(44):29940-29953. PubMed ID: 29090305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate 13-C and 15-N molecular crystal chemical shielding tensors from fragment-based electronic structure theory.
    Hartman JD; Beran GJO
    Solid State Nucl Magn Reson; 2018 Dec; 96():10-18. PubMed ID: 30273904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Predicted Nuclear Magnetic Resonance Chemical Shifts Using the Quasi-Harmonic Approximation.
    McKinley JL; Beran GJO
    J Chem Theory Comput; 2019 Oct; 15(10):5259-5274. PubMed ID: 31442040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Electrostatic Embedding for Fragment-Based Chemical Shift Calculations in Molecular Crystals.
    Hartman JD; Balaji A; Beran GJO
    J Chem Theory Comput; 2017 Dec; 13(12):6043-6051. PubMed ID: 29139294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.
    Hartman JD; Monaco S; Schatschneider B; Beran GJ
    J Chem Phys; 2015 Sep; 143(10):102809. PubMed ID: 26374002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.
    Cho Y; Cho WJ; Youn IS; Lee G; Singh NJ; Kim KS
    Acc Chem Res; 2014 Nov; 47(11):3321-30. PubMed ID: 25338296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals.
    Hartman JD; Beran GJ
    J Chem Theory Comput; 2014 Nov; 10(11):4862-72. PubMed ID: 26584373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors.
    Skelton JM; Tiana D; Parker SC; Togo A; Tanaka I; Walsh A
    J Chem Phys; 2015 Aug; 143(6):064710. PubMed ID: 26277159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-of-the-Art Calculations of Sublimation Enthalpies for Selected Molecular Crystals and Their Computational Uncertainty.
    Červinka C; Fulem M
    J Chem Theory Comput; 2017 Jun; 13(6):2840-2850. PubMed ID: 28437618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of N-H...O and O-H...O hydrogen bonds on the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen: a density functional theory study.
    Esrafili MD; Behzadi H; Hadipour NL
    Biophys Chem; 2007 Jun; 128(1):38-45. PubMed ID: 17418477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice thermal expansion and anisotropic displacements in 𝜶-sulfur from diffraction experiments and first-principles theory.
    George J; Deringer VL; Wang A; Müller P; Englert U; Dronskowski R
    J Chem Phys; 2016 Dec; 145(23):234512. PubMed ID: 28010090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.