These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27754679)

  • 1. The Catalyst-Controlled Regiodivergent Chlorination of Phenols.
    Maddox SM; Dinh AN; Armenta F; Um J; Gustafson JL
    Org Lett; 2016 Nov; 18(21):5476-5479. PubMed ID: 27754679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalyst-Tuned Electrophilic Chlorination of Diverse Aromatic Compounds with Sulfuryl Chloride and Regioselective Chlorination of Phenols with Organocatalysts.
    Ertürk E; Yeşil TA
    J Org Chem; 2022 Oct; 87(19):12558-12573. PubMed ID: 36137270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalyst-Controlled Regioselective Chlorination of Phenols and Anilines through a Lewis Basic Selenoether Catalyst.
    Dinh AN; Maddox SM; Vaidya SD; Saputra MA; Nalbandian CJ; Gustafson JL
    J Org Chem; 2020 Nov; 85(21):13895-13905. PubMed ID: 33044067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2,2,6,6-Tetramethylpiperidine-catalyzed, ortho-selective chlorination of phenols by sulfuryl chloride.
    Saper NI; Snider BB
    J Org Chem; 2014 Jan; 79(2):809-13. PubMed ID: 24328120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorination of aromatic compounds in micellar media: regioselectivity.
    Samant BS; Saraf YP; Bhagwat SS
    J Colloid Interface Sci; 2006 Oct; 302(1):207-13. PubMed ID: 16806254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of chlorinated phenols, dibenzo-p-dioxins, dibenzofurans, benzenes, benzoquinnones and perchloroethylenes from phenols in oxidative and copper (II) chloride-catalyzed thermal process.
    Ryu JY
    Chemosphere; 2008 Apr; 71(6):1100-9. PubMed ID: 18054065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of 2,6-dichloro-1,4-benzoquinone from aromatic compounds after chlorination.
    Kosaka K; Nakai T; Hishida Y; Asami M; Ohkubo K; Akiba M
    Water Res; 2017 Mar; 110():48-55. PubMed ID: 27984805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile precursor to ruthenium-bis(phosphine) hydrogenation catalysts.
    Akotsi OM; Metera K; Reid RD; McDonald R; Bergens SH
    Chirality; 2000 Jun; 12(5-6):514-22. PubMed ID: 10824180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BINAP versus BINAP(O) in asymmetric intermolecular Mizoroki-Heck reactions: substantial effects on selectivities.
    Wöste TH; Oestreich M
    Chemistry; 2011 Oct; 17(42):11914-8. PubMed ID: 21898621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly ortho-Selective Chlorination of Anilines Using a Secondary Ammonium Salt Organocatalyst.
    Xiong X; Yeung YY
    Angew Chem Int Ed Engl; 2016 Dec; 55(52):16101-16105. PubMed ID: 27900807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst-controlled aliphatic C-H oxidations with a predictive model for site-selectivity.
    Gormisky PE; White MC
    J Am Chem Soc; 2013 Sep; 135(38):14052-5. PubMed ID: 24020940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development.
    Acero JL; Piriou P; von Gunten U
    Water Res; 2005 Aug; 39(13):2979-93. PubMed ID: 15985278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pH on the chlorination process of phenols in drinking water.
    Ge F; Zhu L; Chen H
    J Hazard Mater; 2006 May; 133(1-3):99-105. PubMed ID: 16337340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NO(2)(+) nitration mechanism of aromatic compounds: electrophilic vs charge-transfer process.
    Tanaka M; Muro E; Ando H; Xu Q; Fujiwara M; Souma Y; Yamaguchi Y
    J Org Chem; 2000 May; 65(10):2972-8. PubMed ID: 10814186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiroptical activity of BINAP-stabilized undecagold clusters.
    Yanagimoto Y; Negishi Y; Fujihara H; Tsukuda T
    J Phys Chem B; 2006 Jun; 110(24):11611-4. PubMed ID: 16800452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalyst-controlled regiodivergent C-H borylation of multifunctionalized heteroarenes by using iridium complexes.
    Sasaki I; Taguchi J; Hiraki S; Ito H; Ishiyama T
    Chemistry; 2015 Jun; 21(25):9236-41. PubMed ID: 25966001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled copper-mediated chlorination of phenol rings under mild conditions.
    Song YF; van Albada GA; Tang J; Mutikainen I; Turpeinen U; Massera C; Roubeau O; Costa JS; Gamez P; Reedijk J
    Inorg Chem; 2007 Jun; 46(12):4944-50. PubMed ID: 17497851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, and catalytic properties of new electrophilic iridium(III) complexes containing the (R)-(+)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl ligand.
    Atesin AC; Zhang J; Vaidya T; Brennessel WW; Frontier AJ; Eisenberg R
    Inorg Chem; 2010 May; 49(9):4331-42. PubMed ID: 20361755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation and transformation pathways of chlorophenols formed from chlorination of phenol at trace level concentration.
    Nunez-Gaytan AM; Vera-Avila LE; De Llasera MG; Covarrubias-Herrera R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Aug; 45(10):1213-22. PubMed ID: 20563915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of Ligand Effect in Homogenous Gold Catalysis: Enabling Regiodivergent π-Bond-Activated Cyclization.
    Ding D; Mou T; Feng M; Jiang X
    J Am Chem Soc; 2016 Apr; 138(16):5218-21. PubMed ID: 27058740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.