These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 27755167)

  • 1. Improving cardiac reprogramming for heart regeneration.
    Liu L; Lei I; Wang Z
    Curr Opin Organ Transplant; 2016 Dec; 21(6):588-594. PubMed ID: 27755167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction.
    Ma H; Wang L; Liu J; Qian L
    Methods Mol Biol; 2017; 1521():69-88. PubMed ID: 27910042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pluripotent reprogramming and lineage reprogramming: promises and challenges in cardiovascular regeneration.
    He WJ; Hou Q; Han QW; Han WD; Fu XB
    Tissue Eng Part B Rev; 2014 Aug; 20(4):304-13. PubMed ID: 24063625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Cardiac Reprogramming for Heart Regeneration in Translational Medicine.
    Liu L; Guo Y; Li Z; Wang Z
    Cells; 2021 Nov; 10(12):. PubMed ID: 34943805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte.
    Liu Z; Wang L; Welch JD; Ma H; Zhou Y; Vaseghi HR; Yu S; Wall JB; Alimohamadi S; Zheng M; Yin C; Shen W; Prins JF; Liu J; Qian L
    Nature; 2017 Nov; 551(7678):100-104. PubMed ID: 29072293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes.
    Liu Z; Chen O; Zheng M; Wang L; Zhou Y; Yin C; Liu J; Qian L
    Stem Cell Res; 2016 Mar; 16(2):507-18. PubMed ID: 26957038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Cardiac Reprogramming for Cardiovascular Regeneration and Differentiation.
    Sadahiro T; Ieda M
    Keio J Med; 2020 Sep; 69(3):49-58. PubMed ID: 31915320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Direct Lineage Reprogramming of Fibroblasts into Induced Cardiomyocytes Using Nanotopographical Cues.
    Yoo J; Chang Y; Kim H; Baek S; Choi H; Jeong GJ; Shin J; Kim H; Kim BS; Kim J
    J Biomed Nanotechnol; 2017 Mar; 13(3):269-79. PubMed ID: 29381029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Reprogramming-The Future of Cardiac Regeneration?
    Doppler SA; Deutsch MA; Lange R; Krane M
    Int J Mol Sci; 2015 Jul; 16(8):17368-93. PubMed ID: 26230692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions.
    Ebrahimi B
    J Mol Cell Cardiol; 2017 Jul; 108():61-72. PubMed ID: 28502796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Conversion of Murine Fibroblasts into Cardiomyocyte-Like Cells.
    Xu J; Wang L; Liu J; Qian L
    Methods Mol Biol; 2021; 2158():155-170. PubMed ID: 32857372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical suppression of specific C-C chemokine signaling pathways enhances cardiac reprogramming.
    Guo Y; Lei I; Tian S; Gao W; Hacer K; Li Y; Wang S; Liu L; Wang Z
    J Biol Chem; 2019 Jun; 294(23):9134-9146. PubMed ID: 31023824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming.
    Wang L; Liu Z; Yin C; Asfour H; Chen O; Li Y; Bursac N; Liu J; Qian L
    Circ Res; 2015 Jan; 116(2):237-44. PubMed ID: 25416133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro Assessment of Cardiac Reprogramming by Measuring Cardiac Specific Calcium Flux with a GCaMP3 Reporter.
    Li Z; Liu L; Wang Z
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35285824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reprogramming of Non-myocytes into Cardiomyocyte-like Cells: Challenges and Opportunities.
    Farber G; Qian L
    Curr Cardiol Rep; 2020 Jun; 22(8):54. PubMed ID: 32562156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Reprogramming of Adult Human Cardiac Fibroblasts into Induced Cardiomyocytes Using miRcombo.
    Paoletti C; Divieto C; Chiono V
    Methods Mol Biol; 2022; 2573():31-40. PubMed ID: 36040584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. microRNA and Cardiac Regeneration.
    Gnecchi M; Pisano F; Bariani R
    Adv Exp Med Biol; 2015; 887():119-41. PubMed ID: 26662989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bmi1 Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming.
    Zhou Y; Wang L; Vaseghi HR; Liu Z; Lu R; Alimohamadi S; Yin C; Fu JD; Wang GG; Liu J; Qian L
    Cell Stem Cell; 2016 Mar; 18(3):382-95. PubMed ID: 26942853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regenerating the human heart: direct reprogramming strategies and their current limitations.
    Ghiroldi A; Piccoli M; Ciconte G; Pappone C; Anastasia L
    Basic Res Cardiol; 2017 Oct; 112(6):68. PubMed ID: 29079873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heart development and regeneration via cellular interaction and reprogramming.
    Ieda M
    Keio J Med; 2013; 62(4):99-106. PubMed ID: 24026008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.