These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27755752)

  • 1. Controls on methane concentrations and fluxes in streams draining human-dominated landscapes.
    Crawford JT; Stanley EH
    Ecol Appl; 2016 Jul; 26(5):1581-1591. PubMed ID: 27755752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ebullitive methane emissions from oxygenated wetland streams.
    Crawford JT; Stanley EH; Spawn SA; Finlay JC; Loken LC; Striegl RG
    Glob Chang Biol; 2014 Nov; 20(11):3408-22. PubMed ID: 24756991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns in CH4 and CO2 concentrations across boreal rivers: Major drivers and implications for fluvial greenhouse emissions under climate change scenarios.
    Campeau A; Del Giorgio PA
    Glob Chang Biol; 2014 Apr; 20(4):1075-88. PubMed ID: 24273093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of catchment characteristics on aquatic carbon export from a boreal catchment and its importance in regional carbon cycling.
    Huotari J; Nykänen H; Forsius M; Arvola L
    Glob Chang Biol; 2013 Dec; 19(12):3607-20. PubMed ID: 23893508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Review of CO
    Wang XF; Yuan XZ; Chen H; He YX; Luo Z; Liu L; He ZY
    Huan Jing Ke Xue; 2017 Dec; 38(12):5352-5366. PubMed ID: 29964600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot spot of CH
    Tang W; Xu YJ; Ma Y; Maher DT; Li S
    Water Res; 2021 Oct; 204():117624. PubMed ID: 34500180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Methane Emissions Largely Attributed to Ebullitive Fluxes from a Subtropical River Draining a Rice Paddy Watershed in China.
    Wu S; Li S; Zou Z; Hu T; Hu Z; Liu S; Zou J
    Environ Sci Technol; 2019 Apr; 53(7):3499-3507. PubMed ID: 30865437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global methane emissions from rivers and streams.
    Rocher-Ros G; Stanley EH; Loken LC; Casson NJ; Raymond PA; Liu S; Amatulli G; Sponseller RA
    Nature; 2023 Sep; 621(7979):530-535. PubMed ID: 37587344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separating natural from human enhanced methane emissions in headwater streams.
    Zhu Y; Jones JI; Collins AL; Zhang Y; Olde L; Rovelli L; Murphy JF; Heppell CM; Trimmer M
    Nat Commun; 2022 Jul; 13(1):3810. PubMed ID: 35778387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions.
    Rasilo T; Prairie YT; Del Giorgio PA
    Glob Chang Biol; 2015 Mar; 21(3):1124-39. PubMed ID: 25220765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change mitigation for agriculture: water quality benefits and costs.
    Wilcock R; Elliott S; Hudson N; Parkyn S; Quinn J
    Water Sci Technol; 2008; 58(11):2093-9. PubMed ID: 19092184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the dissolved nitrogen pool across land cover gradients in Wisconsin streams.
    Stanley EH; Maxted JT
    Ecol Appl; 2008 Oct; 18(7):1579-90. PubMed ID: 18839755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sediment trapping by dams creates methane emission hot spots.
    Maeck A; Delsontro T; McGinnis DF; Fischer H; Flury S; Schmidt M; Fietzek P; Lorke A
    Environ Sci Technol; 2013 Aug; 47(15):8130-7. PubMed ID: 23799866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative mitigation of aquatic methane emissions in large Amazonian rivers.
    Sawakuchi HO; Bastviken D; Sawakuchi AO; Ward ND; Borges CD; Tsai SM; Richey JE; Ballester MV; Krusche AV
    Glob Chang Biol; 2016 Mar; 22(3):1075-85. PubMed ID: 26872424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal variability of sediment controls of carbon cycling in an agricultural stream.
    Comer-Warner SA; Gooddy DC; Ullah S; Glover L; Percival A; Kettridge N; Krause S
    Sci Total Environ; 2019 Oct; 688():732-741. PubMed ID: 31255811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Streambed Organic Matter Controls on Carbon Dioxide and Methane Emissions from Streams.
    Romeijn P; Comer-Warner SA; Ullah S; Hannah DM; Krause S
    Environ Sci Technol; 2019 Mar; 53(5):2364-2374. PubMed ID: 30694050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ebullition was a major pathway of methane emissions from the aquaculture ponds in southeast China.
    Yang P; Zhang Y; Yang H; Guo Q; Lai DYF; Zhao G; Li L; Tong C
    Water Res; 2020 Oct; 184():116176. PubMed ID: 32693266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane emissions from Amazonian Rivers and their contribution to the global methane budget.
    Sawakuchi HO; Bastviken D; Sawakuchi AO; Krusche AV; Ballester MV; Richey JE
    Glob Chang Biol; 2014 Sep; 20(9):2829-40. PubMed ID: 24890429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Watershed urbanization dominated the spatiotemporal pattern of riverine methane emissions: Evidence from montanic streams that drain different landscapes in Southwest China.
    Li X; He Y; Wang X; Chen H; Liu T; Que Y; Yuan X; Wu S; Zhou T
    Sci Total Environ; 2023 May; 873():162343. PubMed ID: 36813197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances.
    Panneer Selvam B; Natchimuthu S; Arunachalam L; Bastviken D
    Glob Chang Biol; 2014 Nov; 20(11):3397-407. PubMed ID: 24623552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.