These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 27756219)
1. Gene expression profile indicates involvement of NO in Camellia sinensis pollen tube growth at low temperature. Pan J; Wang W; Li D; Shu Z; Ye X; Chang P; Wang Y BMC Genomics; 2016 Oct; 17(1):809. PubMed ID: 27756219 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. Zhang CC; Wang LY; Wei K; Wu LY; Li HL; Zhang F; Cheng H; Ni DJ BMC Genomics; 2016 May; 17():359. PubMed ID: 27183979 [TBL] [Abstract][Full Text] [Related]
3. MicroRNA Omics Analysis of Xu X; Wang W; Sun Y; Xing A; Wu Z; Tian Z; Li X; Wang Y Biomolecules; 2021 Jun; 11(7):. PubMed ID: 34201466 [TBL] [Abstract][Full Text] [Related]
4. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro. Wang YH; Li XC; Zhu-Ge Q; Jiang X; Wang WD; Fang WP; Chen X; Li XH PLoS One; 2012; 7(12):e52436. PubMed ID: 23272244 [TBL] [Abstract][Full Text] [Related]
5. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. Shi CY; Yang H; Wei CL; Yu O; Zhang ZZ; Jiang CJ; Sun J; Li YY; Chen Q; Xia T; Wan XC BMC Genomics; 2011 Feb; 12():131. PubMed ID: 21356090 [TBL] [Abstract][Full Text] [Related]
6. Global Transcriptional Insights of Pollen-Pistil Interactions Commencing Self-Incompatibility and Fertilization in Tea [ Seth R; Bhandawat A; Parmar R; Singh P; Kumar S; Sharma RK Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30696008 [TBL] [Abstract][Full Text] [Related]
7. Involvement of Salicylic Acid in Anthracnose Infection in Tea Plants Revealed by Transcriptome Profiling. Shi YL; Sheng YY; Cai ZY; Yang R; Li QS; Li XM; Li D; Guo XY; Lu JL; Ye JH; Wang KR; Zhang LJ; Liang YR; Zheng XQ Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31108845 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome sequencing dissection of the mechanisms underlying differential cold sensitivity in young and mature leaves of the tea plant (Camellia sinensis). Li NN; Yue C; Cao HL; Qian WJ; Hao XY; Wang YC; Wang L; Ding CQ; Wang XC; Yang YJ J Plant Physiol; 2018; 224-225():144-155. PubMed ID: 29642051 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome profiling of tobacco (Nicotiana tabacum) pollen and pollen tubes. Conze LL; Berlin S; Le Bail A; Kost B BMC Genomics; 2017 Aug; 18(1):581. PubMed ID: 28784084 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic analysis between self- and cross-pollinated pistils of tea plants (Camellia sinensis). Ma Q; Chen C; Zeng Z; Zou Z; Li H; Zhou Q; Chen X; Sun K; Li X BMC Genomics; 2018 Apr; 19(1):289. PubMed ID: 29695246 [TBL] [Abstract][Full Text] [Related]
11. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis). Li CF; Xu YX; Ma JQ; Jin JQ; Huang DJ; Yao MZ; Ma CL; Chen L BMC Plant Biol; 2016 Sep; 16(1):195. PubMed ID: 27609021 [TBL] [Abstract][Full Text] [Related]
12. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). Li CF; Zhu Y; Yu Y; Zhao QY; Wang SJ; Wang XC; Yao MZ; Luo D; Li X; Chen L; Yang YJ BMC Genomics; 2015 Jul; 16(1):560. PubMed ID: 26220550 [TBL] [Abstract][Full Text] [Related]
13. Global transcriptome profiles of Camellia sinensis during cold acclimation. Wang XC; Zhao QY; Ma CL; Zhang ZH; Cao HL; Kong YM; Yue C; Hao XY; Chen L; Ma JQ; Jin JQ; Li X; Yang YJ BMC Genomics; 2013 Jun; 14():415. PubMed ID: 23799877 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. Zhang Y; Zhu X; Chen X; Song C; Zou Z; Wang Y; Wang M; Fang W; Li X BMC Plant Biol; 2014 Oct; 14():271. PubMed ID: 25330732 [TBL] [Abstract][Full Text] [Related]
15. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. Guo Y; Zhao S; Zhu C; Chang X; Yue C; Wang Z; Lin Y; Lai Z BMC Plant Biol; 2017 Nov; 17(1):211. PubMed ID: 29157225 [TBL] [Abstract][Full Text] [Related]
16. Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). Tan LQ; Wang LY; Wei K; Zhang CC; Wu LY; Qi GN; Cheng H; Zhang Q; Cui QM; Liang JB PLoS One; 2013; 8(11):e81611. PubMed ID: 24303059 [TBL] [Abstract][Full Text] [Related]
18. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Wang YN; Tang L; Hou Y; Wang P; Yang H; Wei CL Funct Integr Genomics; 2016 Jul; 16(4):383-98. PubMed ID: 27098524 [TBL] [Abstract][Full Text] [Related]
19. Effect of fluoride treatment on gene expression in tea plant (Camellia sinensis). Li QS; Lin XM; Qiao RY; Zheng XQ; Lu JL; Ye JH; Liang YR Sci Rep; 2017 Aug; 7(1):9847. PubMed ID: 28851890 [TBL] [Abstract][Full Text] [Related]
20. Combined Cytological and Transcriptomic Analysis Reveals a Nitric Oxide Signaling Pathway Involved in Cold-Inhibited Camellia sinensis Pollen Tube Growth. Wang W; Sheng X; Shu Z; Li D; Pan J; Ye X; Chang P; Li X; Wang Y Front Plant Sci; 2016; 7():456. PubMed ID: 27148289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]