These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 27756305)
1. BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium. Ahmad I; Rouf SF; Sun L; Cimdins A; Shafeeq S; Le Guyon S; Schottkowski M; Rhen M; Römling U Microb Cell Fact; 2016 Oct; 15(1):177. PubMed ID: 27756305 [TBL] [Abstract][Full Text] [Related]
2. The cellulose synthase BcsA plays a role in interactions of Salmonella typhimurium with Acanthamoeba castellanii genotype T4. Gill MA; Rafique MW; Manan T; Slaeem S; Römling U; Matin A; Ahmad I Parasitol Res; 2018 Jul; 117(7):2283-2289. PubMed ID: 29797083 [TBL] [Abstract][Full Text] [Related]
3. Alteration of the rugose phenotype in waaG and ddhC mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose. Anriany Y; Sahu SN; Wessels KR; McCann LM; Joseph SW Appl Environ Microbiol; 2006 Jul; 72(7):5002-12. PubMed ID: 16820499 [TBL] [Abstract][Full Text] [Related]
4. Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189. Castiblanco LF; Sundin GW Mol Plant Pathol; 2018 Jan; 19(1):90-103. PubMed ID: 27753193 [TBL] [Abstract][Full Text] [Related]
5. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Simm R; Ahmad I; Rhen M; Le Guyon S; Römling U Future Microbiol; 2014; 9(11):1261-82. PubMed ID: 25437188 [TBL] [Abstract][Full Text] [Related]
6. Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium. Monteiro C; Papenfort K; Hentrich K; Ahmad I; Le Guyon S; Reimann R; Grantcharova N; Römling U RNA Biol; 2012 Apr; 9(4):489-502. PubMed ID: 22336758 [TBL] [Abstract][Full Text] [Related]
7. The CRISPR-Cas System Differentially Regulates Surface-Attached and Pellicle Biofilm in Salmonella enterica Serovar Typhimurium. Sharma N; Das A; Raja P; Marathe SA Microbiol Spectr; 2022 Jun; 10(3):e0020222. PubMed ID: 35678575 [TBL] [Abstract][Full Text] [Related]
8. Dissecting the cyclic di-guanylate monophosphate signalling network regulating motility in Salmonella enterica serovar Typhimurium. Le Guyon S; Simm R; Rehn M; Römling U Environ Microbiol; 2015 Apr; 17(4):1310-20. PubMed ID: 25059628 [TBL] [Abstract][Full Text] [Related]
9. Salmonella promotes virulence by repressing cellulose production. Pontes MH; Lee EJ; Choi J; Groisman EA Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5183-8. PubMed ID: 25848006 [TBL] [Abstract][Full Text] [Related]
10. gcpA (stm1987) is critical for cellulose production and biofilm formation on polystyrene surface by Salmonella enterica serovar Weltevreden in both high and low nutrient medium. Bhowmick PP; Devegowda D; Ruwandeepika HA; Fuchs TM; Srikumar S; Karunasagar I; Karunasagar I Microb Pathog; 2011 Feb; 50(2):114-22. PubMed ID: 21147214 [TBL] [Abstract][Full Text] [Related]
11. The activity of BcsZ of Fratty IS; Shachar D; Katsman M; Yaron S Front Cell Infect Microbiol; 2022; 12():967796. PubMed ID: 36081768 [No Abstract] [Full Text] [Related]
12. Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Kader A; Simm R; Gerstel U; Morr M; Römling U Mol Microbiol; 2006 May; 60(3):602-16. PubMed ID: 16629664 [TBL] [Abstract][Full Text] [Related]
13. Crl activates transcription initiation of RpoS-regulated genes involved in the multicellular behavior of Salmonella enterica serovar Typhimurium. Robbe-Saule V; Jaumouillé V; Prévost MC; Guadagnini S; Talhouarne C; Mathout H; Kolb A; Norel F J Bacteriol; 2006 Jun; 188(11):3983-94. PubMed ID: 16707690 [TBL] [Abstract][Full Text] [Related]
14. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. García B; Latasa C; Solano C; García-del Portillo F; Gamazo C; Lasa I Mol Microbiol; 2004 Oct; 54(1):264-77. PubMed ID: 15458421 [TBL] [Abstract][Full Text] [Related]
15. Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. Lamprokostopoulou A; Monteiro C; Rhen M; Römling U Environ Microbiol; 2010 Jan; 12(1):40-53. PubMed ID: 19691499 [TBL] [Abstract][Full Text] [Related]
17. Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. Römling U; Bokranz W; Rabsch W; Zogaj X; Nimtz M; Tschäpe H Int J Med Microbiol; 2003 Aug; 293(4):273-85. PubMed ID: 14503792 [TBL] [Abstract][Full Text] [Related]
18. Modulation of biofilm-formation in Salmonella enterica serovar Typhimurium by the periplasmic DsbA/DsbB oxidoreductase system requires the GGDEF-EAL domain protein STM3615. Anwar N; Rouf SF; Römling U; Rhen M PLoS One; 2014; 9(8):e106095. PubMed ID: 25153529 [TBL] [Abstract][Full Text] [Related]
20. Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: identification of a new colony morphology type and the role of SGI1 in biofilm formation. Malcova M; Hradecka H; Karpiskova R; Rychlik I Vet Microbiol; 2008 Jun; 129(3-4):360-6. PubMed ID: 18242887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]