These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 2775639)
1. Long-term patency of regenerated neoaortic wall following the implant of a fully biodegradable polyurethane prosthesis: experimental lipid diet model in pigs. Galletti G; Gogolewski S; Ussia G; Farruggia F Ann Vasc Surg; 1989 Jul; 3(3):236-43. PubMed ID: 2775639 [TBL] [Abstract][Full Text] [Related]
2. Prevention of platelet aggregation by dietary polyunsaturated fatty acids in the biodegradable polyurethane vascular prosthesis: an experimental model in pigs. Galletti G; Ussia G; Farruggia F; Baccarini E; Biagi G; Gogolewski S Ital J Surg Sci; 1989; 19(2):121-30. PubMed ID: 2753684 [TBL] [Abstract][Full Text] [Related]
3. Sequential studies of arterial wall regeneration in microporous, compliant, biodegradable small-caliber vascular grafts in rats. van der Lei B; Wildevuur CR; Dijk F; Blaauw EH; Molenaar I; Nieuwenhuis P J Thorac Cardiovasc Surg; 1987 May; 93(5):695-707. PubMed ID: 3573782 [TBL] [Abstract][Full Text] [Related]
4. Three years experience with experimental implantation of fibrous polyurethane microvascular prostheses in the rat aorta. Hess F; Jerusalem C; Braun B; Grande P Microsurgery; 1985; 6(3):155-62. PubMed ID: 4058300 [TBL] [Abstract][Full Text] [Related]
5. Long-term biologic fate of neoarteries regenerated in microporous, compliant, biodegradable, small-caliber vascular grafts in rats. van der Lei B; Nieuwenhuis P; Molenaar I; Wildevuur CR Surgery; 1987 Apr; 101(4):459-67. PubMed ID: 3563893 [TBL] [Abstract][Full Text] [Related]
6. Patency and long-term biological fate of a two-ply biodegradable microarterial prosthesis in the rat. Robinson PH; van der Lei B; Knol KE; Pennings AJ Br J Plast Surg; 1989 Sep; 42(5):544-9. PubMed ID: 2804520 [TBL] [Abstract][Full Text] [Related]
7. Patency and neo-intima development in 10 cm-long microvascular polyurethane prostheses implanted into the rat aorta. Hess F; Jerusalem C; Braun B; Grande P Thorac Cardiovasc Surg; 1984 Oct; 32(5):283-7. PubMed ID: 6083616 [TBL] [Abstract][Full Text] [Related]
8. Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall. Mirza A; Hyvelin JM; Rochefort GY; Lermusiaux P; Antier D; Awede B; Bonnet P; Domenech J; Eder V J Vasc Surg; 2008 Jun; 47(6):1313-21. PubMed ID: 18329228 [TBL] [Abstract][Full Text] [Related]
9. Microporous, complaint, biodegradable vascular grafts for the regeneration of the arterial wall in rat abdominal aorta. van der Lei B; Bartels HL; Nieuwenhuis P; Wildevuur CR Surgery; 1985 Nov; 98(5):955-63. PubMed ID: 4060072 [TBL] [Abstract][Full Text] [Related]
10. Improvement of patency rate in heparin-coated small synthetic vascular grafts. Walpoth BH; Rogulenko R; Tikhvinskaia E; Gogolewski S; Schaffner T; Hess OM; Althaus U Circulation; 1998 Nov; 98(19 Suppl):II319-23; discussion II324. PubMed ID: 9852921 [TBL] [Abstract][Full Text] [Related]
11. Compliance and biodegradation of vascular grafts stimulate the regeneration of elastic laminae in neoarterial tissue: an experimental study in rats. van der Lei B; Wildevuur CR; Nieuwenhuis P Surgery; 1986 Jan; 99(1):45-52. PubMed ID: 3942000 [TBL] [Abstract][Full Text] [Related]
12. Very small-diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting. Okoshi T; Soldani G; Goddard M; Galletti PM J Thorac Cardiovasc Surg; 1993 May; 105(5):791-5. PubMed ID: 8487558 [TBL] [Abstract][Full Text] [Related]
13. Electrospun small-diameter polyurethane vascular grafts: ingrowth and differentiation of vascular-specific host cells. Bergmeister H; Grasl C; Walter I; Plasenzotti R; Stoiber M; Schreiber C; Losert U; Weigel G; Schima H Artif Organs; 2012 Jan; 36(1):54-61. PubMed ID: 21848935 [TBL] [Abstract][Full Text] [Related]
14. Patency and healing of polymeric microvenous prostheses implanted into the rat femoral vein by means of the sleeve anastomotic technique. Robinson PH; van der Lei B; Schakenraad JM; Jongebloed WJ; Hoppen HJ; Pennings AJ; Nieuwenhuis P J Reconstr Microsurg; 1990 Jul; 6(3):287-92. PubMed ID: 2292792 [TBL] [Abstract][Full Text] [Related]
15. Smooth muscle cell seeding in biodegradable grafts in rats: a new method to enhance the process of arterial wall regeneration. Yue X; van der Lei B; Schakenraad JM; van Oene GH; Kuit JH; Feijen J; Wildevuur CR Surgery; 1988 Feb; 103(2):206-12. PubMed ID: 3340990 [TBL] [Abstract][Full Text] [Related]
16. A fibrous polyurethane microvascular prosthesis. Morphological evaluation of the neo-intima. Hess F; Jerusalem C; Braun B J Cardiovasc Surg (Torino); 1983; 24(5):509-15. PubMed ID: 6654965 [TBL] [Abstract][Full Text] [Related]
17. Ingrowth of aorta wall into stent grafts impregnated with basic fibroblast growth factor: a porcine in vivo study of blood vessel prosthesis healing. van der Bas JM; Quax PH; van den Berg AC; Visser MJ; van der Linden E; van Bockel JH J Vasc Surg; 2004 Apr; 39(4):850-8. PubMed ID: 15071454 [TBL] [Abstract][Full Text] [Related]
18. A study of the interface between a fibrous polyurethane arterial prosthesis and natural tissue. Beahan P; Hull D J Biomed Mater Res; 1982 Nov; 16(6):827-38. PubMed ID: 6757256 [TBL] [Abstract][Full Text] [Related]
19. Penetrating micropores increase patency and achieve extensive endothelialization in small diameter polymer skin coated vascular grafts. Okoshi T; Soldani G; Goddard M; Galletti PM ASAIO J; 1996; 42(5):M398-401. PubMed ID: 8944915 [TBL] [Abstract][Full Text] [Related]
20. A novel microporous polyurethane vascular graft: in vivo evaluation of the UTA prosthesis implanted as infra-renal aortic substitute in dogs. Marois Y; Akoum A; King M; Guidoin R; von Maltzahn W; Kowligi R; Eberhart RC; Teijeira FJ; Verreault J J Invest Surg; 1993; 6(3):273-88. PubMed ID: 8398999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]