BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27756919)

  • 1. Problems with extracellular recording of electrical activity in gastrointestinal muscle.
    Sanders KM; Ward SM; Hennig GW
    Nat Rev Gastroenterol Hepatol; 2016 Dec; 13(12):731-741. PubMed ID: 27756919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous Electrical Activity and Rhythmicity in Gastrointestinal Smooth Muscles.
    Sanders KM
    Adv Exp Med Biol; 2019; 1124():3-46. PubMed ID: 31183821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement based artifacts may contaminate extracellular electrical recordings from GI muscles.
    Bayguinov O; Hennig GW; Sanders KM
    Neurogastroenterol Motil; 2011 Nov; 23(11):1029-42, e498. PubMed ID: 21951699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engaging biological oscillators through second messenger pathways permits emergence of a robust gastric slow-wave during peristalsis.
    Ahmed MA; Venugopal S; Jung R
    PLoS Comput Biol; 2021 Dec; 17(12):e1009644. PubMed ID: 34871315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation of slow waves requires IP3 receptors and mitochondrial Ca2+ uptake in canine colonic muscles.
    Ward SM; Baker SA; de Faoite A; Sanders KM
    J Physiol; 2003 May; 549(Pt 1):207-18. PubMed ID: 12665604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic conductances involved in generation and propagation of electrical slow waves in phasic gastrointestinal muscles.
    Sanders KM; Koh SD; Ordög T; Ward SM
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():100-5. PubMed ID: 15066013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrogastrography: basic knowledge, recording, processing and its clinical applications.
    Chang FY
    J Gastroenterol Hepatol; 2005 Apr; 20(4):502-16. PubMed ID: 15836697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A preliminary model of gastrointestinal electromechanical coupling.
    Du P; Poh YC; Lim JL; Gajendiran V; O'Grady G; Buist ML; Pullan AJ; Cheng LK
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3491-5. PubMed ID: 21878406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electrical analysis of slow wave propagation in the guinea-pig gastric antrum.
    Edwards FR; Hirst GD
    J Physiol; 2006 Feb; 571(Pt 1):179-89. PubMed ID: 16357016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interstitial cells of Cajal and electrical activity of smooth muscle in porcine ileum.
    Hudson NP; Mayhew IG; Pearson GT
    Acta Physiol (Oxf); 2006 Jul; 187(3):391-7. PubMed ID: 16776664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are interstitial cells of Cajal plurifunction cells in the gut?
    Sarna SK
    Am J Physiol Gastrointest Liver Physiol; 2008 Feb; 294(2):G372-90. PubMed ID: 17932226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of gastrointestinal motility--insights from smooth muscle biology.
    Sanders KM; Koh SD; Ro S; Ward SM
    Nat Rev Gastroenterol Hepatol; 2012 Nov; 9(11):633-45. PubMed ID: 22965426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromechanical coupling and anatomy of the in vivo gastroduodenal junction.
    Simmonds S; Matthee A; Dowrick JM; Taberner AJ; Du P; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2024 Jul; 327(1):G93-G104. PubMed ID: 38772901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of interstitial cells of Cajal in the control of gastric motility.
    Hirst GD; Edwards FR
    J Pharmacol Sci; 2004 Sep; 96(1):1-10. PubMed ID: 15351789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interstitial cells of cajal generate electrical slow waves in the murine stomach.
    Ordög T; Ward SM; Sanders KM
    J Physiol; 1999 Jul; 518(Pt 1):257-69. PubMed ID: 10373707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-definition spatiotemporal mapping of contractile activity in the isolated proximal colon of the rabbit.
    Lentle RG; Janssen PW; Asvarujanon P; Chambers P; Stafford KJ; Hemar Y
    J Comp Physiol B; 2008 Mar; 178(3):257-68. PubMed ID: 17952441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular Cl
    Saravanaperumal SA; Gibbons SJ; Malysz J; Sha L; Linden DR; Szurszewski JH; Farrugia G
    Exp Physiol; 2018 Jan; 103(1):40-57. PubMed ID: 28971566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductances responsible for slow wave generation and propagation in interstitial cells of Cajal.
    Koh SD; Ward SM; Ordög T; Sanders KM; Horowitz B
    Curr Opin Pharmacol; 2003 Dec; 3(6):579-82. PubMed ID: 14644007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shifting into high gear: how interstitial cells of Cajal change the motility pattern of the developing intestine.
    Chevalier NR; Ammouche Y; Gomis A; Teyssaire C; de Santa Barbara P; Faure S
    Am J Physiol Gastrointest Liver Physiol; 2020 Oct; 319(4):G519-G528. PubMed ID: 32877218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical events underlying organized myogenic contractions of the guinea pig stomach.
    Hirst GD; Edwards FR
    J Physiol; 2006 Nov; 576(Pt 3):659-65. PubMed ID: 16873400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.