BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2775725)

  • 1. Activation energy of the slowest step in the glucose carrier cycle: break at 23 degrees C and correlation with membrane lipid fluidity.
    Whitesell RR; Regen DM; Beth AH; Pelletier DK; Abumrad NA
    Biochemistry; 1989 Jun; 28(13):5618-25. PubMed ID: 2775725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A
    Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport.
    Helgerson AL; Carruthers A
    Biochemistry; 1989 May; 28(11):4580-94. PubMed ID: 2765504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of glucose transport in erythrocytes from normal and alloxan-diabetic rats.
    Abumrad NA; Briscoe P; Beth AH; Whitesell RR
    Biochim Biophys Acta; 1988 Feb; 938(2):222-30. PubMed ID: 3342233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated net efflux of 3-O-methylglucose from rat adipocytes: a reevaluation.
    Wheeler TJ
    Biochim Biophys Acta; 1994 Mar; 1190(2):345-54. PubMed ID: 8142435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of glucose transport in human erythrocytes: zero-trans efflux and infinite-trans efflux at 0 degree C.
    Wheeler TJ
    Biochim Biophys Acta; 1986 Nov; 862(2):387-98. PubMed ID: 3778899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human erythrocyte hexose transporter activity is governed by bilayer lipid composition in reconstituted vesicles.
    Carruthers A; Melchior DL
    Biochemistry; 1984 Dec; 23(26):6901-11. PubMed ID: 6543323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring conformational change in the human erythrocyte glucose carrier: use of a fluorescent probe attached to an exofacial carrier sulfhydryl.
    May JM; Beechem JM
    Biochemistry; 1993 Mar; 32(11):2907-15. PubMed ID: 8457556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstituted human erythrocyte sugar transporter activity is determined by bilayer lipid head groups.
    Tefft RE; Carruthers A; Melchior DL
    Biochemistry; 1986 Jun; 25(12):3709-18. PubMed ID: 3718955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-O-methyl-D-glucose transport in rat red cells: effects of heavy water.
    Naftalin RJ; Rist RJ
    Biochim Biophys Acta; 1991 Apr; 1064(1):37-48. PubMed ID: 1851040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of hexose transport by adenosine derivatives in human erythrocytes.
    May JM
    J Cell Physiol; 1988 May; 135(2):332-8. PubMed ID: 3372599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of two independent modes of action of ATP on human erythrocyte sugar transport.
    Helgerson AL; Hebert DN; Naderi S; Carruthers A
    Biochemistry; 1989 Jul; 28(15):6410-7. PubMed ID: 2506926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The human erythrocyte ghost: a new experimental model for studying adenosine transport.
    Fernandez-Rivera-Rio L; Gonzalez-Garcia MR
    Arch Biochem Biophys; 1985 Jul; 240(1):246-56. PubMed ID: 4015103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-examination of hexose exchanges using rat erythrocytes: evidence inconsistent with a one-site sequential exchange model, but consistent with a two-site simultaneous exchange model.
    Naftalin RJ; Rist RJ
    Biochim Biophys Acta; 1994 Apr; 1191(1):65-78. PubMed ID: 8155685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinetic analysis of hexose transport in cultured human lymphocytes (IM-9).
    Rees WD; Gliemann J
    Biochim Biophys Acta; 1985 Jan; 812(1):98-106. PubMed ID: 4038456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B.
    Carruthers A; Helgerson AL
    Biochemistry; 1991 Apr; 30(16):3907-15. PubMed ID: 2018762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic tests of models for sugar transport in human erythrocytes and a comparison of fresh and cold-stored cells.
    Weiser MB; Razin M; Stein WD
    Biochim Biophys Acta; 1983 Jan; 727(2):379-88. PubMed ID: 6838879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluidity of human erythrocyte membrane and effect of chlorpromazine on fluidity and phase separation of membrane.
    Ogiso T; Iwaki M; Mori K
    Biochim Biophys Acta; 1981 Dec; 649(2):325-35. PubMed ID: 6119112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.