BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27757332)

  • 1. The Northwestern Abdominoplasty Scar Model: A Novel Human Model for Scar Research and Therapeutics.
    Lanier ST; Liu J; Chavez-Munoz C; Mustoe TA; Galiano RD
    Plast Reconstr Surg Glob Open; 2016 Sep; 4(9):e867. PubMed ID: 27757332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Northwestern Abdominoplasty Scar Model: A Tool for High-Throughput Assessment of Scar Therapeutics.
    Hsieh JC; Joshi CJ; Wan R; Galiano RD
    Adv Wound Care (New Rochelle); 2020 Jul; 9(7):396-404. PubMed ID: 32320363
    [No Abstract]   [Full Text] [Related]  

  • 3. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention.
    Ferguson MW; O'Kane S
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):839-50. PubMed ID: 15293811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin biomechanics: a potential therapeutic intervention target to reduce scarring.
    Hosseini M; Brown J; Khosrotehrani K; Bayat A; Shafiee A
    Burns Trauma; 2022; 10():tkac036. PubMed ID: 36017082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regenerative healing, scar-free healing and scar formation across the species: current concepts and future perspectives.
    Ud-Din S; Volk SW; Bayat A
    Exp Dermatol; 2014 Sep; 23(9):615-9. PubMed ID: 24863070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-animal models of wound healing in cutaneous repair: In silico, in vitro, ex vivo, and in vivo models of wounds and scars in human skin.
    Ud-Din S; Bayat A
    Wound Repair Regen; 2017 Apr; 25(2):164-176. PubMed ID: 28120405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Systematic Review Comparing Animal and Human Scarring Models.
    Mistry R; Veres M; Issa F
    Front Surg; 2022; 9():711094. PubMed ID: 35529910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dose-ranging, parallel group, split-face, single-blind phase II study of light emitting diode-red light (LED-RL) for skin scarring prevention: study protocol for a randomized controlled trial.
    Nguyen JK; Weedon J; Jakus J; Heilman E; Isseroff RR; Siegel DM; Jagdeo JR
    Trials; 2019 Jul; 20(1):432. PubMed ID: 31307501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topical verapamil as a scar modulator.
    Boggio RF; Boggio LF; Galvão BL; Machado-Santelli GM
    Aesthetic Plast Surg; 2014 Oct; 38(5):968-75. PubMed ID: 25189298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mechanomodulatory Device to Minimize Incisional Scar Formation.
    Wong VW; Beasley B; Zepeda J; Dauskardt RH; Yock PG; Longaker MT; Gurtner GC
    Adv Wound Care (New Rochelle); 2013 May; 2(4):185-194. PubMed ID: 24527342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemokines in Wound Healing and as Potential Therapeutic Targets for Reducing Cutaneous Scarring.
    Rees PA; Greaves NS; Baguneid M; Bayat A
    Adv Wound Care (New Rochelle); 2015 Nov; 4(11):687-703. PubMed ID: 26543682
    [No Abstract]   [Full Text] [Related]  

  • 12. Interleukin-10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase II randomized control studies.
    Kieran I; Knock A; Bush J; So K; Metcalfe A; Hobson R; Mason T; O'Kane S; Ferguson M
    Wound Repair Regen; 2013; 21(3):428-36. PubMed ID: 23627460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early intervention with non-ablative fractional laser to improve cutaneous scarring-A randomized controlled trial on the impact of intervention time and fluence levels.
    Karmisholt KE; Wenande E; Thaysen-Petersen D; Philipsen PA; Paasch U; Haedersdal M
    Lasers Surg Med; 2018 Jan; 50(1):28-36. PubMed ID: 28815643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapies with emerging evidence of efficacy: avotermin for the improvement of scarring.
    Bush J; So K; Mason T; Occleston NL; O'Kane S; Ferguson MW
    Dermatol Res Pract; 2010; 2010():. PubMed ID: 20811604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of the efficacy and tolerability of a unique topical scar product vs white petrolatum following shave biopsies.
    Kircik LH
    J Drugs Dermatol; 2013 Jan; 12(1):86-90. PubMed ID: 23377333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Forces in Cutaneous Wound Healing: Emerging Therapies to Minimize Scar Formation.
    Barnes LA; Marshall CD; Leavitt T; Hu MS; Moore AL; Gonzalez JG; Longaker MT; Gurtner GC
    Adv Wound Care (New Rochelle); 2018 Feb; 7(2):47-56. PubMed ID: 29392093
    [No Abstract]   [Full Text] [Related]  

  • 17. Development of a histomorphologic scale to quantify cutaneous scars after burns.
    Singer AJ; Thode HC; McClain SA
    Acad Emerg Med; 2000 Oct; 7(10):1083-8. PubMed ID: 11015238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring.
    Mehta M; Branford OA; Rolfe KJ
    Burns Trauma; 2016; 4():15. PubMed ID: 27574685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recommendations on clinical proof of efficacy for potential scar prevention and reduction therapies.
    Bush JA; McGrouther DA; Young VL; Herndon DN; Longaker MT; Mustoe TA; Ferguson MW
    Wound Repair Regen; 2011 Sep; 19 Suppl 1():s32-7. PubMed ID: 21793964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new quantitative scale for clinical scar assessment.
    Beausang E; Floyd H; Dunn KW; Orton CI; Ferguson MW
    Plast Reconstr Surg; 1998 Nov; 102(6):1954-61. PubMed ID: 9810991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.