These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27757452)

  • 1. Spatial organization based reciprocal switching of enzyme-free nucleic acid circuits.
    Tang Y; Zhu Z; Lu B; Li B
    Chem Commun (Camb); 2016 Oct; 52(88):13043-13046. PubMed ID: 27757452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits.
    Li B; Jiang Y; Chen X; Ellington AD
    J Am Chem Soc; 2012 Aug; 134(34):13918-21. PubMed ID: 22894754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleic acid functionalized graphene for biosensing.
    Bonanni A; Ambrosi A; Pumera M
    Chemistry; 2012 Feb; 18(6):1668-73. PubMed ID: 22213459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of barcode-like nucleic acid nanostructures.
    Wang P; Tian C; Li X; Mao C
    Small; 2014 Oct; 10(19):3923-6. PubMed ID: 24978689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel surface plasmon resonance biosensor for enzyme-free and highly sensitive detection of microRNA based on multi component nucleic acid enzyme (MNAzyme)-mediated catalyzed hairpin assembly.
    Li X; Cheng W; Li D; Wu J; Ding X; Cheng Q; Ding S
    Biosens Bioelectron; 2016 Jun; 80():98-104. PubMed ID: 26807523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hairpin assembly circuit-based fluorescence cooperative amplification strategy for enzyme-free and label-free detection of small molecule.
    Feng C; Zhu J; Sun J; Jiang W; Wang L
    Talanta; 2015 Oct; 143():101-106. PubMed ID: 26078135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pd nanowires as new biosensing materials for magnified fluorescent detection of nucleic acid.
    Zhang L; Guo S; Dong S; Wang E
    Anal Chem; 2012 Apr; 84(8):3568-73. PubMed ID: 22420689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-catalytic hairpin assembly-based exponential signal amplification for CRET assay with low background noise.
    Yue S; Zhao T; Qi H; Yan Y; Bi S
    Biosens Bioelectron; 2017 Aug; 94():671-676. PubMed ID: 28390318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnostic applications of nucleic acid circuits.
    Jung C; Ellington AD
    Acc Chem Res; 2014 Jun; 47(6):1825-35. PubMed ID: 24828239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triggered and catalyzed self-assembly of hyperbranched DNA structures for logic operations and homogeneous CRET biosensing of microRNA.
    Bi S; Yue S; Wu Q; Ye J
    Chem Commun (Camb); 2016 Apr; 52(31):5455-8. PubMed ID: 27010350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strand-Exchange Nucleic Acid Circuitry with Enhanced Thermo-and Structure- Buffering Abilities Turns Gene Diagnostics Ultra-Reliable and Environmental Compatible.
    Zhu Z; Tang Y; Jiang YS; Bhadra S; Du Y; Ellington AD; Li B
    Sci Rep; 2016 Nov; 6():36605. PubMed ID: 27812041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-free, signal-amplified nucleic acid circuits for biosensing and bioimaging analysis.
    Chen J; Tang L; Chu X; Jiang J
    Analyst; 2017 Aug; 142(17):3048-3061. PubMed ID: 28744530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical sensors based on hybrid DNA/conjugated polymer complexes.
    Ho HA; Béra-Abérem M; Leclerc M
    Chemistry; 2005 Mar; 11(6):1718-24. PubMed ID: 15565742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleic Acid Nanostructures for Chemical and Biological Sensing.
    Chandrasekaran AR; Wady H; Subramanian HK
    Small; 2016 May; 12(20):2689-700. PubMed ID: 27040036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-catalyzed autonomous assembly of dendrimer-like DNA nanostructures for enzyme-free and signal amplified colorimetric nucleic acids detection.
    He H; Dai J; Duan Z; Meng Y; Zhou C; Long Y; Zheng B; Du J; Guo Y; Xiao D
    Biosens Bioelectron; 2016 Dec; 86():985-989. PubMed ID: 27498325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleic acid based molecular devices.
    Krishnan Y; Simmel FC
    Angew Chem Int Ed Engl; 2011 Mar; 50(14):3124-56. PubMed ID: 21432950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructuring of sensors determines the efficiency of biomolecular capture.
    Bin X; Sargent EH; Kelley SO
    Anal Chem; 2010 Jul; 82(14):5928-31. PubMed ID: 20568723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling up digital circuit computation with DNA strand displacement cascades.
    Qian L; Winfree E
    Science; 2011 Jun; 332(6034):1196-201. PubMed ID: 21636773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleic acid conjugated nanomaterials for enhanced molecular recognition.
    Wang H; Yang R; Yang L; Tan W
    ACS Nano; 2009 Sep; 3(9):2451-60. PubMed ID: 19658387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits.
    Quan K; Huang J; Yang X; Yang Y; Ying L; Wang H; Xie N; Ou M; Wang K
    Anal Chem; 2016 Jun; 88(11):5857-64. PubMed ID: 27142084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.