BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 27757742)

  • 1. Recursive Model Identification for the Evaluation of Baroreflex Sensitivity.
    Le Rolle V; Beuchée A; Praud JP; Samson N; Pladys P; Hernández AI
    Acta Biotheor; 2016 Dec; 64(4):469-478. PubMed ID: 27757742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recursive identification of an arterial baroreflex model for the evaluation of cardiovascular autonomic modulation.
    Le Rolle V; Beuchee A; Praud JP; Samson N; Pladys P; Hernández AI
    Comput Biol Med; 2015 Nov; 66():287-94. PubMed ID: 26453759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model-based approach for the evaluation of vagal and sympathetic activities in a newborn lamb.
    Le Rolle V; Ojeda D; Beuchée A; Praud JP; Pladys P; Hernández AI
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3881-4. PubMed ID: 24110579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals.
    Matsukawa K
    Exp Physiol; 2012 Jan; 97(1):20-8. PubMed ID: 21984731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nociception attenuates parasympathetic but not sympathetic baroreflex via NK1 receptors in the rat nucleus tractus solitarii.
    Pickering AE; Boscan P; Paton JF
    J Physiol; 2003 Sep; 551(Pt 2):589-99. PubMed ID: 12813142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baroreflex control of heart rate and renal sympathetic nerve activity in rats with low brain angiotensinogen.
    Caligiorne SM; Silva AQ; Fontes MA; Silva JR; Baltatu O; Bader M; Santos RA; Campagnole-Santos MJ
    Neuropeptides; 2008 Apr; 42(2):159-68. PubMed ID: 18242696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the insular cortex in the modulation of baroreflex sensitivity.
    Saleh TM; Connell BJ
    Am J Physiol; 1998 May; 274(5):R1417-24. PubMed ID: 9612410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sympathetic control of short-term heart rate variability and its pharmacological modulation.
    Elghozi JL; Julien C
    Fundam Clin Pharmacol; 2007 Aug; 21(4):337-47. PubMed ID: 17635171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of exercise training on autonomic dysfunction management in an experimental model of menopause and myocardial infarction.
    Flores LJ; Figueroa D; Sanches IC; Jorge L; Irigoyen MC; Rodrigues B; De Angelis K
    Menopause; 2010 Jul; 17(4):712-7. PubMed ID: 20577132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of sympathetic and parasympathetic nerves function in cardiovascular regulation using ANFIS approximation.
    Jalali A; Ghaffari A; Ghorbanian P; Nataraj C
    Artif Intell Med; 2011 May; 52(1):27-32. PubMed ID: 21439800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hypothermia on baroreflex control of heart rate and renal sympathetic nerve activity in anaesthetized rats.
    Sabharwal R; Coote JH; Johns EJ; Egginton S
    J Physiol; 2004 May; 557(Pt 1):247-59. PubMed ID: 14978202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability in cardiovascular control: the baroreflex reconsidered.
    Karemaker JM; Wesseling KH
    Cardiovasc Eng; 2008 Mar; 8(1):23-9. PubMed ID: 18041583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased baroreflex sensitivity is linked to sympathovagal imbalance, body fat mass and altered cardiometabolic profile in pre-obesity and obesity.
    Indumathy J; Pal GK; Pal P; Ananthanarayanan PH; Parija SC; Balachander J; Dutta TK
    Metabolism; 2015 Dec; 64(12):1704-14. PubMed ID: 26454717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased cardiac sympathetic drive and reduced vagal modulation following endothelin receptor antagonism in healthy conscious rats.
    Souza HC; Terzini GC; da Silva VJ; Martins-Pinge MC; Salgado HC; Salgado MC
    Clin Exp Pharmacol Physiol; 2008 Jul; 35(7):751-6. PubMed ID: 18346180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelet-based system identification of short-term dynamic characteristics of arterial baroreflex.
    Kashihara K; Kawada T; Sugimachi M; Sunagawa K
    Ann Biomed Eng; 2009 Jan; 37(1):112-28. PubMed ID: 19003536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of exercise training on arterial baroreflex sensitivity in neurally mediated syncope patients.
    Gardenghi G; Rondon MU; Braga AM; Scanavacca MI; Negrão CE; Sosa E; Hachul DT
    Eur Heart J; 2007 Nov; 28(22):2749-55. PubMed ID: 17561494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tonically Active cAMP-Dependent Signaling in the Ventrolateral Medulla Regulates Sympathetic and Cardiac Vagal Outflows.
    Tallapragada VJ; Hildreth CM; Burke PG; Raley DA; Hassan SF; McMullan S; Goodchild AK
    J Pharmacol Exp Ther; 2016 Feb; 356(2):424-33. PubMed ID: 26578265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Point:counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism.
    Eckberg DL
    J Appl Physiol (1985); 2009 May; 106(5):1740-2; discussion 1744. PubMed ID: 18719228
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of carotid baroreflex and sympathetic responses in the push-pull effect: a simulation study.
    Liu Y; Zhang LF; Zhang KL; Lu HB
    Aviat Space Environ Med; 2012 Sep; 83(9):841-9. PubMed ID: 22946347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adrenergic and vagal baroreflex sensitivity in autonomic failure.
    Schrezenmaier C; Singer W; Swift NM; Sletten D; Tanabe J; Low PA
    Arch Neurol; 2007 Mar; 64(3):381-6. PubMed ID: 17353381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.