These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Frequency-domain differential photoacoustic radar: theory and validation for ultrasensitive atherosclerotic plaque imaging. Choi SSS; Lashkari B; Mandelis A; Son J; Alves-Kotzev N; Foster SF; Harduar M; Courtney B J Biomed Opt; 2019 Jun; 24(6):1-12. PubMed ID: 31197987 [TBL] [Abstract][Full Text] [Related]
6. Photoacoustic radar phase-filtered spatial resolution and co-registered ultrasound image enhancement for tumor detection. Dovlo E; Lashkari B; Mandelis A; Shi W; Liu FF Biomed Opt Express; 2015 Mar; 6(3):1003-9. PubMed ID: 25798321 [TBL] [Abstract][Full Text] [Related]
7. Interference-free Detection of Lipid-laden Atherosclerotic Plaques by 3D Co-registration of Frequency-Domain Differential Photoacoustic and Ultrasound Radar Imaging. Choi SSS; Lashkari B; Mandelis A; Weyers JJ; Boyes A; Foster SF; Alves-Kotzev N; Courtney B Sci Rep; 2019 Aug; 9(1):12400. PubMed ID: 31455883 [TBL] [Abstract][Full Text] [Related]
8. Estimating blood oxygenation from photoacoustic images: can a simple linear spectroscopic inversion ever work? Hochuli R; An L; Beard PC; Cox BT J Biomed Opt; 2019 Dec; 24(12):1-13. PubMed ID: 31849203 [TBL] [Abstract][Full Text] [Related]
9. Photoacoustic Imaging as an Early Biomarker of Radio Therapeutic Efficacy in Head and Neck Cancer. Rich LJ; Miller A; Singh AK; Seshadri M Theranostics; 2018; 8(8):2064-2078. PubMed ID: 29721063 [TBL] [Abstract][Full Text] [Related]
10. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue. Alhamami M; Kolios MC; Tavakkoli J Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408 [TBL] [Abstract][Full Text] [Related]
11. Fluence-matching technique using photoacoustic radiofrequency spectra for improving estimates of oxygen saturation. Fadhel MN; Hysi E; Assi H; Kolios MC Photoacoustics; 2020 Sep; 19():100182. PubMed ID: 32547922 [TBL] [Abstract][Full Text] [Related]
13. Monitoring Oxygenation Levels Deep in the Tumor Core: Noninvasive Imaging of Hypoxia, Now in Real-Time 3D. Klibanov AL; Hu S Cancer Res; 2019 Sep; 79(18):4577-4579. PubMed ID: 31519775 [TBL] [Abstract][Full Text] [Related]
14. In Vitro and In Vivo Multispectral Photoacoustic Imaging for the Evaluation of Chromophore Concentration. Dolet A; Ammanouil R; Petrilli V; Richard C; Tortoli P; Vray D; Varray F Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34066263 [TBL] [Abstract][Full Text] [Related]
15. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration. Laufer J; Delpy D; Elwell C; Beard P Phys Med Biol; 2007 Jan; 52(1):141-68. PubMed ID: 17183133 [TBL] [Abstract][Full Text] [Related]
16. Phase-domain photoacoustics eliminating acoustic detection variations. Tingyang Duan ; Ruochong Zhang ; Xiaohua Feng ; Siyu Liu ; Ran Ding ; Yuanjin Zheng ; Fei Gao Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4026-4029. PubMed ID: 29060780 [TBL] [Abstract][Full Text] [Related]
17. Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels. Sivaramakrishnan M; Maslov K; Zhang HF; Stoica G; Wang LV Phys Med Biol; 2007 Mar; 52(5):1349-61. PubMed ID: 17301459 [TBL] [Abstract][Full Text] [Related]
18. Non-Invasive Monitoring of Human Health by Photoacoustic Spectroscopy. Jin Y; Yin Y; Li C; Liu H; Shi J Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161900 [TBL] [Abstract][Full Text] [Related]