BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 27758051)

  • 1. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.
    Dovlo E; Lashkari B; Soo Sean Choi S; Mandelis A; Shi W; Liu FF
    J Biophotonics; 2017 Sep; 10(9):1134-1142. PubMed ID: 27758051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring.
    Choi SS; Mandelis A; Guo X; Lashkari B; Kellnberger S; Ntziachristos V
    J Biophotonics; 2016 Apr; 9(4):388-95. PubMed ID: 25996635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous dual-wavelength photoacoustic radar imaging using waveform engineering with mismatched frequency modulated excitation.
    Lashkari B; Sean Choi SS; Khosroshahi ME; Dovlo E; Mandelis A
    Opt Lett; 2015 Apr; 40(7):1145-8. PubMed ID: 25831278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelength-modulated differential photoacoustic radar imager (WM-DPARI): accurate monitoring of absolute hemoglobin oxygen saturation.
    Choi SS; Lashkari B; Dovlo E; Mandelis A
    Biomed Opt Express; 2016 Jul; 7(7):2586-96. PubMed ID: 27446691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-domain differential photoacoustic radar: theory and validation for ultrasensitive atherosclerotic plaque imaging.
    Choi SSS; Lashkari B; Mandelis A; Son J; Alves-Kotzev N; Foster SF; Harduar M; Courtney B
    J Biomed Opt; 2019 Jun; 24(6):1-12. PubMed ID: 31197987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic radar phase-filtered spatial resolution and co-registered ultrasound image enhancement for tumor detection.
    Dovlo E; Lashkari B; Mandelis A; Shi W; Liu FF
    Biomed Opt Express; 2015 Mar; 6(3):1003-9. PubMed ID: 25798321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interference-free Detection of Lipid-laden Atherosclerotic Plaques by 3D Co-registration of Frequency-Domain Differential Photoacoustic and Ultrasound Radar Imaging.
    Choi SSS; Lashkari B; Mandelis A; Weyers JJ; Boyes A; Foster SF; Alves-Kotzev N; Courtney B
    Sci Rep; 2019 Aug; 9(1):12400. PubMed ID: 31455883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating blood oxygenation from photoacoustic images: can a simple linear spectroscopic inversion ever work?
    Hochuli R; An L; Beard PC; Cox BT
    J Biomed Opt; 2019 Dec; 24(12):1-13. PubMed ID: 31849203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluence-matching technique using photoacoustic radiofrequency spectra for improving estimates of oxygen saturation.
    Fadhel MN; Hysi E; Assi H; Kolios MC
    Photoacoustics; 2020 Sep; 19():100182. PubMed ID: 32547922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoacoustic Imaging as an Early Biomarker of Radio Therapeutic Efficacy in Head and Neck Cancer.
    Rich LJ; Miller A; Singh AK; Seshadri M
    Theranostics; 2018; 8(8):2064-2078. PubMed ID: 29721063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues.
    Tzoumas S; Nunes A; Olefir I; Stangl S; Symvoulidis P; Glasl S; Bayer C; Multhoff G; Ntziachristos V
    Nat Commun; 2016 Jun; 7():12121. PubMed ID: 27358000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring Oxygenation Levels Deep in the Tumor Core: Noninvasive Imaging of Hypoxia, Now in Real-Time 3D.
    Klibanov AL; Hu S
    Cancer Res; 2019 Sep; 79(18):4577-4579. PubMed ID: 31519775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro and In Vivo Multispectral Photoacoustic Imaging for the Evaluation of Chromophore Concentration.
    Dolet A; Ammanouil R; Petrilli V; Richard C; Tortoli P; Vray D; Varray F
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34066263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration.
    Laufer J; Delpy D; Elwell C; Beard P
    Phys Med Biol; 2007 Jan; 52(1):141-68. PubMed ID: 17183133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-domain photoacoustics eliminating acoustic detection variations.
    Tingyang Duan ; Ruochong Zhang ; Xiaohua Feng ; Siyu Liu ; Ran Ding ; Yuanjin Zheng ; Fei Gao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4026-4029. PubMed ID: 29060780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels.
    Sivaramakrishnan M; Maslov K; Zhang HF; Stoica G; Wang LV
    Phys Med Biol; 2007 Mar; 52(5):1349-61. PubMed ID: 17301459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Invasive Monitoring of Human Health by Photoacoustic Spectroscopy.
    Jin Y; Yin Y; Li C; Liu H; Shi J
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors.
    Bendinger AL; Glowa C; Peter J; Karger CP
    J Biomed Opt; 2018 Mar; 23(3):1-11. PubMed ID: 29560625
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.