These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 27758051)

  • 1. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.
    Dovlo E; Lashkari B; Soo Sean Choi S; Mandelis A; Shi W; Liu FF
    J Biophotonics; 2017 Sep; 10(9):1134-1142. PubMed ID: 27758051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring.
    Choi SS; Mandelis A; Guo X; Lashkari B; Kellnberger S; Ntziachristos V
    J Biophotonics; 2016 Apr; 9(4):388-95. PubMed ID: 25996635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous dual-wavelength photoacoustic radar imaging using waveform engineering with mismatched frequency modulated excitation.
    Lashkari B; Sean Choi SS; Khosroshahi ME; Dovlo E; Mandelis A
    Opt Lett; 2015 Apr; 40(7):1145-8. PubMed ID: 25831278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelength-modulated differential photoacoustic radar imager (WM-DPARI): accurate monitoring of absolute hemoglobin oxygen saturation.
    Choi SS; Lashkari B; Dovlo E; Mandelis A
    Biomed Opt Express; 2016 Jul; 7(7):2586-96. PubMed ID: 27446691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-domain differential photoacoustic radar: theory and validation for ultrasensitive atherosclerotic plaque imaging.
    Choi SSS; Lashkari B; Mandelis A; Son J; Alves-Kotzev N; Foster SF; Harduar M; Courtney B
    J Biomed Opt; 2019 Jun; 24(6):1-12. PubMed ID: 31197987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic radar phase-filtered spatial resolution and co-registered ultrasound image enhancement for tumor detection.
    Dovlo E; Lashkari B; Mandelis A; Shi W; Liu FF
    Biomed Opt Express; 2015 Mar; 6(3):1003-9. PubMed ID: 25798321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interference-free Detection of Lipid-laden Atherosclerotic Plaques by 3D Co-registration of Frequency-Domain Differential Photoacoustic and Ultrasound Radar Imaging.
    Choi SSS; Lashkari B; Mandelis A; Weyers JJ; Boyes A; Foster SF; Alves-Kotzev N; Courtney B
    Sci Rep; 2019 Aug; 9(1):12400. PubMed ID: 31455883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating blood oxygenation from photoacoustic images: can a simple linear spectroscopic inversion ever work?
    Hochuli R; An L; Beard PC; Cox BT
    J Biomed Opt; 2019 Dec; 24(12):1-13. PubMed ID: 31849203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoacoustic Imaging as an Early Biomarker of Radio Therapeutic Efficacy in Head and Neck Cancer.
    Rich LJ; Miller A; Singh AK; Seshadri M
    Theranostics; 2018; 8(8):2064-2078. PubMed ID: 29721063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluence-matching technique using photoacoustic radiofrequency spectra for improving estimates of oxygen saturation.
    Fadhel MN; Hysi E; Assi H; Kolios MC
    Photoacoustics; 2020 Sep; 19():100182. PubMed ID: 32547922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues.
    Tzoumas S; Nunes A; Olefir I; Stangl S; Symvoulidis P; Glasl S; Bayer C; Multhoff G; Ntziachristos V
    Nat Commun; 2016 Jun; 7():12121. PubMed ID: 27358000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring Oxygenation Levels Deep in the Tumor Core: Noninvasive Imaging of Hypoxia, Now in Real-Time 3D.
    Klibanov AL; Hu S
    Cancer Res; 2019 Sep; 79(18):4577-4579. PubMed ID: 31519775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro and In Vivo Multispectral Photoacoustic Imaging for the Evaluation of Chromophore Concentration.
    Dolet A; Ammanouil R; Petrilli V; Richard C; Tortoli P; Vray D; Varray F
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34066263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration.
    Laufer J; Delpy D; Elwell C; Beard P
    Phys Med Biol; 2007 Jan; 52(1):141-68. PubMed ID: 17183133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-domain photoacoustics eliminating acoustic detection variations.
    Tingyang Duan ; Ruochong Zhang ; Xiaohua Feng ; Siyu Liu ; Ran Ding ; Yuanjin Zheng ; Fei Gao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4026-4029. PubMed ID: 29060780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels.
    Sivaramakrishnan M; Maslov K; Zhang HF; Stoica G; Wang LV
    Phys Med Biol; 2007 Mar; 52(5):1349-61. PubMed ID: 17301459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Invasive Monitoring of Human Health by Photoacoustic Spectroscopy.
    Jin Y; Yin Y; Li C; Liu H; Shi J
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors.
    Bendinger AL; Glowa C; Peter J; Karger CP
    J Biomed Opt; 2018 Mar; 23(3):1-11. PubMed ID: 29560625
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.