BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 27758133)

  • 41. Dextran-Based Hydrogel as a New Tool for BALB/c 3T3 Cell Cryopreservation Without Dimethyl Sulfoxide.
    Pereira J; Ferraretto X; Patrat C; Meddahi-Pellé A
    Biopreserv Biobank; 2019; 17(1):2-10. PubMed ID: 30183333
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Active control of the nucleation temperature enhances freezing survival of multipotent mesenchymal stromal cells.
    Lauterboeck L; Hofmann N; Mueller T; Glasmacher B
    Cryobiology; 2015 Dec; 71(3):384-90. PubMed ID: 26499840
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation.
    Chaytor JL; Tokarew JM; Wu LK; Leclère M; Tam RY; Capicciotti CJ; Guolla L; von Moos E; Findlay CS; Allan DS; Ben RN
    Glycobiology; 2012 Jan; 22(1):123-33. PubMed ID: 21852258
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of Me
    Morris TJ; Picken A; Sharp DMC; Slater NKH; Hewitt CJ; Coopman K
    Cryobiology; 2016 Dec; 73(3):367-375. PubMed ID: 27660063
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Postthaw viability of precultured hepatocytes.
    Darr TB; Hubel A
    Cryobiology; 2001 Feb; 42(1):11-20. PubMed ID: 11336485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cryopreservation of human hematopoietic cells with membrane stabilizers and bioantioxidants as additives in the conventional freezing medium.
    Limaye LS; Kale VP
    J Hematother Stem Cell Res; 2001 Oct; 10(5):709-18. PubMed ID: 11672518
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A sugar pretreatment as a new approach to the Me2SO- and xeno-free cryopreservation of human mesenchymal stromal cells.
    Petrenko YA; Rogulska OY; Mutsenko VV; Petrenko AY
    Cryo Letters; 2014; 35(3):239-46. PubMed ID: 24997842
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The assessment of cryopreservation conditions for human umbilical cord stroma-derived mesenchymal stem cells towards a potential use for stem cell banking.
    Balci D; Can A
    Curr Stem Cell Res Ther; 2013 Jan; 8(1):60-72. PubMed ID: 23270628
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of different diluents, cryoprotective agents, and freezing rates on sperm cryopreservation in Epinephelus akaara.
    Ahn JY; Park JY; Lim HK
    Cryobiology; 2018 Aug; 83():60-64. PubMed ID: 29885288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Defined serum- and xeno-free cryopreservation of mesenchymal stem cells.
    Al-Saqi SH; Saliem M; Quezada HC; Ekblad Å; Jonasson AF; Hovatta O; Götherström C
    Cell Tissue Bank; 2015 Jun; 16(2):181-93. PubMed ID: 25117730
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a cryopreservation protocol for type A spermatogonia.
    Izadyar F; Matthijs-Rijsenbilt JJ; den Ouden K; Creemers LB; Woelders H; de Rooij DG
    J Androl; 2002; 23(4):537-45. PubMed ID: 12065461
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Boron increases the cell viability of mesenchymal stem cells after long-term cryopreservation.
    Demirci S; Doğan A; Şişli B; Sahin F
    Cryobiology; 2014 Feb; 68(1):139-46. PubMed ID: 24463090
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Innocuous intracellular ice improves survival of frozen cells.
    Acker JP; McGann LE
    Cell Transplant; 2002; 11(6):563-71. PubMed ID: 12428746
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Freezing human platelets with 6 percent dimethyl sulfoxide with removal of the supernatant solution before freezing and storage at -80 degrees C without postthaw processing.
    Valeri CR; Ragno G; Khuri S
    Transfusion; 2005 Dec; 45(12):1890-8. PubMed ID: 16371041
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theory-based cryopreservation mode of mesenchymal stromal cell spheroids.
    Gordiyenko OI; Kovalenko IF; Rogulska OY; Trufanova NA; Gurina TM; Trufanov OV; Petrenko OY
    Cryobiology; 2024 Jun; 115():104906. PubMed ID: 38762155
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving viability of cryopreserved honey bee (Apis mellifera L.) sperm with selected diluents, cryoprotectants, and semen dilution ratios.
    Taylor MA; Guzmán-Novoa E; Morfin N; Buhr MM
    Theriogenology; 2009 Jul; 72(2):149-59. PubMed ID: 19329172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of high concentrations of dimethyl sulfoxide for cryopreservation of HepG2 cells adhered to glass and polydimethylsiloxane matrices.
    Nagahara Y; Sekine H; Otaki M; Hayashi M; Murase N
    Cryobiology; 2016 Feb; 72(1):53-9. PubMed ID: 26621206
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cryopreservation of platelets using trehalose: the role of membrane phase behavior during freezing.
    Gläfke C; Akhoondi M; Oldenhof H; Sieme H; Wolkers WF
    Biotechnol Prog; 2012; 28(5):1347-54. PubMed ID: 22837111
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation.
    Janz Fde L; Debes Ade A; Cavaglieri Rde C; Duarte SA; Romão CM; Morón AF; Zugaib M; Bydlowski SP
    J Biomed Biotechnol; 2012; 2012():649353. PubMed ID: 22665987
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fetal bovine serum-free cryopreservation methods for clinical banking of human adipose-derived stem cells.
    Park S; Lee DR; Nam JS; Ahn CW; Kim H
    Cryobiology; 2018 Apr; 81():65-73. PubMed ID: 29448017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.