These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27758134)

  • 21. Mathematical classification of tight junction protein images.
    Ogawa KH; Troyer CM; Doss RG; Aminian F; Balreira EC; King JM
    J Microsc; 2013 Nov; 252(2):100-10. PubMed ID: 23889324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 2D/3D buccal epithelial cell self-assembling as a tool for cell phenotype maintenance and fabrication of multilayered epithelial linings in vitro.
    Zurina IM; Shpichka AI; Saburina IN; Kosheleva NV; Gorkun AA; Grebenik EA; Kuznetsova DS; Zhang D; Rochev YA; Butnaru DV; Zharikova TM; Istranova EV; Zhang Y; Istranov LP; Timashev PS
    Biomed Mater; 2018 Jul; 13(5):054104. PubMed ID: 29926804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Re-engineering primary epithelial cells from rhesus monkey parotid glands for use in developing an artificial salivary gland.
    Tran SD; Sugito T; Dipasquale G; Cotrim AP; Bandyopadhyay BC; Riddle K; Mooney D; Kok MR; Chiorini JA; Baum BJ
    Tissue Eng; 2006 Oct; 12(10):2939-48. PubMed ID: 17518661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blow-spun chitosan/PEG/PLGA nanofibers as a novel tissue engineering scaffold with antibacterial properties.
    Bienek DR; Hoffman KM; Tutak W
    J Mater Sci Mater Med; 2016 Sep; 27(9):146. PubMed ID: 27568217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lumen formation in three-dimensional cultures of salivary acinar cells.
    Pradhan S; Liu C; Zhang C; Jia X; Farach-Carson MC; Witt RL
    Otolaryngol Head Neck Surg; 2010 Feb; 142(2):191-5. PubMed ID: 20115973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation.
    Yin Z; Chen X; Song HX; Hu JJ; Tang QM; Zhu T; Shen WL; Chen JL; Liu H; Heng BC; Ouyang HW
    Biomaterials; 2015 Mar; 44():173-85. PubMed ID: 25617136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human mesenchymal stem cells cultured with salivary gland biopsies adopt an epithelial phenotype.
    Maria OM; Tran SD
    Stem Cells Dev; 2011 Jun; 20(6):959-67. PubMed ID: 21187001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
    Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH
    Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells.
    Cong X; Zhang Y; Li J; Mei M; Ding C; Xiang RL; Zhang LW; Wang Y; Wu LL; Yu GY
    J Cell Sci; 2015 Jun; 128(12):2271-86. PubMed ID: 25948584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrospun nanofibers of poly(ε-caprolactone)/depolymerized chitosan for respiratory tissue engineering applications.
    Mahoney C; Conklin D; Waterman J; Sankar J; Bhattarai N
    J Biomater Sci Polym Ed; 2016; 27(7):611-25. PubMed ID: 26796598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering.
    Jin G; Prabhakaran MP; Ramakrishna S
    Acta Biomater; 2011 Aug; 7(8):3113-22. PubMed ID: 21550425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue.
    Kowalski WJ; Yuan F; Nakane T; Masumoto H; Dwenger M; Ye F; Tinney JP; Keller BB
    Microsc Microanal; 2017 Aug; 23(4):826-842. PubMed ID: 28625174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An edgewise look at basal epithelial cells: three-dimensional views of the rat prostate, mammary gland and salivary gland.
    Hayward SW; Brody JR; Cunha GR
    Differentiation; 1996 Jul; 60(4):219-27. PubMed ID: 8765052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biologically improved nanofibrous scaffolds for cardiac tissue engineering.
    Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Segmentation and Quantitative Analysis of Epithelial Tissues.
    Aigouy B; Umetsu D; Eaton S
    Methods Mol Biol; 2016; 1478():227-239. PubMed ID: 27730585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering.
    Cai YZ; Zhang GR; Wang LL; Jiang YZ; Ouyang HW; Zou XH
    J Biomed Mater Res A; 2012 May; 100(5):1187-94. PubMed ID: 22345081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of electrospun nanofiber scaffold by short wave length ultraviolet radiation treatment and its potential applications in tissue engineering.
    Yixiang D; Yong T; Liao S; Chan CK; Ramakrishna S
    Tissue Eng Part A; 2008 Aug; 14(8):1321-9. PubMed ID: 18466068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.