BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2775851)

  • 1. CD and small-angle x-ray scattering of silk fibroin in solution.
    Canetti M; Seves A; Secundo F; Vecchio G
    Biopolymers; 1989 Sep; 28(9):1613-24. PubMed ID: 2775851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution.
    Tao W; Li M; Zhao C
    Int J Biol Macromol; 2007 Apr; 40(5):472-8. PubMed ID: 17173967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids.
    Phillips DM; Drummy LF; Conrady DG; Fox DM; Naik RR; Stone MO; Trulove PC; De Long HC; Mantz RA
    J Am Chem Soc; 2004 Nov; 126(44):14350-1. PubMed ID: 15521743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural evolution of regenerated silk fibroin under shear: combined wide- and small-angle x-ray scattering experiments using synchrotron radiation.
    Rössle M; Panine P; Urban VS; Riekel C
    Biopolymers; 2004 Jul; 74(4):316-27. PubMed ID: 15211500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning.
    Ha SW; Tonelli AE; Hudson SM
    Biomacromolecules; 2005; 6(3):1722-31. PubMed ID: 15877399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle x-ray scattering and (13)C cross-polarization/magic angle spinning NMR.
    Asakura T; Yamane T; Nakazawa Y; Kameda T; Ando K
    Biopolymers; 2001 Apr; 58(5):521-5. PubMed ID: 11241223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase behavior and hydration of silk fibroin.
    Sohn S; Strey HH; Gido SP
    Biomacromolecules; 2004; 5(3):751-7. PubMed ID: 15132657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of hyaluronic acid on silk fibroin conformation.
    Garcia-Fuentes M; Giger E; Meinel L; Merkle HP
    Biomaterials; 2008 Feb; 29(6):633-42. PubMed ID: 17996295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution.
    Ha SW; Park YH; Hudson SM
    Biomacromolecules; 2003; 4(3):488-96. PubMed ID: 12741761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of structural transition of regenerated silk fibroin aqueous solution by Rheo-NMR spectroscopy.
    Ohgo K; Bagusat F; Asakura T; Scheler U
    J Am Chem Soc; 2008 Mar; 130(12):4182-6. PubMed ID: 18307348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible implications of serine and tyrosine residues and intermolecular interactions on the appearance of silk I structure of Bombyx mori silk fibroin-derived synthetic peptides: high-resolution 13C cross-polarization/magic-angle spinning NMR study.
    Asakura T; Ohgo K; Ishida T; Taddei P; Monti P; Kishore R
    Biomacromolecules; 2005; 6(1):468-74. PubMed ID: 15638554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New process to form a silk fibroin porous 3-D structure.
    Tamada Y
    Biomacromolecules; 2005; 6(6):3100-6. PubMed ID: 16283733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved structural investigation of regenerated silk fibroin nanofibers treated with solvent vapor.
    Jeong L; Lee KY; Liu JW; Park WH
    Int J Biol Macromol; 2006 Mar; 38(2):140-4. PubMed ID: 16545448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silk fiber assembly studied by synchrotron radiation SAXS/WAXS and Raman spectroscopy.
    Martel A; Burghammer M; Davies RJ; Di Cola E; Vendrely C; Riekel C
    J Am Chem Soc; 2008 Dec; 130(50):17070-4. PubMed ID: 19053481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-bioengineered silk gland fibroin protein: characterization and evaluation of matrices for potential tissue engineering applications.
    Mandal BB; Kundu SC
    Biotechnol Bioeng; 2008 Aug; 100(6):1237-50. PubMed ID: 18383269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and gelation mechanism of silk hydrogels.
    Nagarkar S; Nicolai T; Chassenieux C; Lele A
    Phys Chem Chem Phys; 2010 Apr; 12(15):3834-44. PubMed ID: 20358077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on the flow stability of regenerated silk fibroin aqueous solution.
    Wang H; Zhang Y; Shao H; Hu X
    Int J Biol Macromol; 2005 Jul; 36(1-2):66-70. PubMed ID: 15916801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution.
    Xie F; Zhang H; Shao H; Hu X
    Int J Biol Macromol; 2006 May; 38(3-5):284-8. PubMed ID: 16678253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin.
    Ha SW; Gracz HS; Tonelli AE; Hudson SM
    Biomacromolecules; 2005; 6(5):2563-9. PubMed ID: 16153093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational transition and liquid crystalline state of regenerated silk fibroin in water.
    Li XG; Wu LY; Huang MR; Shao HL; Hu XC
    Biopolymers; 2008 Jun; 89(6):497-505. PubMed ID: 18067155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.