These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2775853)

  • 21. Pseudocooperative effects in reactivation of membrane-bound enzymes with phospholipids.
    Cortese JD; Vidal JC
    Acta Physiol Pharmacol Latinoam; 1984; 34(2):131-42. PubMed ID: 6240912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unification of hierarchical reference theory and self-consistent Ornstein-Zernike approximation: analysis of the critical region for fluids and lattice gases.
    Høye JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021114. PubMed ID: 19391713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Relationship between the rate of ligand binding and the specific microdynamics of contacting amino acid residues].
    Chukniĭski P
    Biofizika; 1979; 24(2):206-9. PubMed ID: 444595
    [No Abstract]   [Full Text] [Related]  

  • 24. Model analysis of surfactant--polymer interaction as cooperative ligand binding to linear lattice.
    Nishio T; Shimizu T
    Biophys Chem; 2005 Aug; 117(1):19-25. PubMed ID: 15907362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Distribution of large ligands on DNA macromolecules of different GC-content].
    Novoseler MA
    Biofizika; 1982; 27(6):1000-4. PubMed ID: 6760902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calculation of cooperativity and equilibrium constants of ligands binding to G-quadruplex DNA in solution.
    Kudrev AG
    Talanta; 2013 Nov; 116():541-7. PubMed ID: 24148442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The four-state model of a linear lattice: application to ligand-controlled hybridization of short duplex DNAs.
    Benight AS
    Biopolymers; 2003 Jul; 69(3):406-20. PubMed ID: 12833267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Model of enzymatic active transport].
    Bukatina AE; Morozov VN
    Biofizika; 1979; 24(2):227-9. PubMed ID: 444599
    [No Abstract]   [Full Text] [Related]  

  • 29. [Cooperation effects in binding of large ligands to DNA. II. Contact interactions between adsorbed ligands].
    Nechipurenko IuD
    Mol Biol (Mosk); 1984; 18(4):1066-80. PubMed ID: 6504025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-step ligand binding and cooperativity. A model to describe the cooperative binding of myosin subfragment 1 to regulated actin.
    Geeves MA; Halsall DJ
    Biophys J; 1987 Aug; 52(2):215-20. PubMed ID: 3663829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction between bisquaternary ammonium ligands and acetylcholinesterase: complex formation studied by fluorescence quenching.
    Taylor P; Jacobs NM
    Mol Pharmacol; 1974 Jan; 10(1):93-107. PubMed ID: 4846185
    [No Abstract]   [Full Text] [Related]  

  • 32. Binding of ligands to a one-dimensional heterogeneous lattice. II. Intercalation of tilorone with DNA and polynucleotides.
    Sturm J; Schreiber L; Daune M
    Biopolymers; 1981 Apr; 20(4):765-85. PubMed ID: 7225526
    [No Abstract]   [Full Text] [Related]  

  • 33. Generalized theory of site-specific DNA-protein interactions.
    Murugan R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011901. PubMed ID: 17677488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Theory of unidimensional adsorption onto homopolymers. Calculation of different ligand molecule orientations].
    Nechipurenko IuD; Zasedatelev AS; Gurskiĭ GV
    Biofizika; 1979; 24(2):351-61. PubMed ID: 444625
    [No Abstract]   [Full Text] [Related]  

  • 35. Calculation of the concentrations of free cations and cation-ligand complexes in solutions containing multiple divalent cations and ligands.
    Goldstein DA
    Biophys J; 1979 May; 26(2):235-42. PubMed ID: 122254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Score-dependent fertility model for the evolution of cooperation in a lattice.
    Nakamaru M; Nogami H; Iwasa Y
    J Theor Biol; 1998 Sep; 194(1):101-24. PubMed ID: 9778428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lattice model of equilibrium polymerization. VII. Understanding the role of "cooperativity" in self-assembly.
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2008 Jun; 128(22):224901. PubMed ID: 18554047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-function relationships in hemoglobins: scientific aspects.
    Moffat K
    Tex Rep Biol Med; 1980-1981; 40():191-8. PubMed ID: 7034268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alternative hydrogen bond implementations produce opposite effects on collapse cooperativity of lattice homopolypeptide models.
    Fleury GM; Barbosa MA; Pereira de Araújo AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051914. PubMed ID: 18233694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.