BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2775889)

  • 1. Pathways for formation of catechol and 1,2,4-benzenetriol in rabbits.
    Inoue O; Seiji K; Ikeda M
    Bull Environ Contam Toxicol; 1989 Aug; 43(2):220-4. PubMed ID: 2775889
    [No Abstract]   [Full Text] [Related]  

  • 2. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes.
    Sawahata T; Neal RA
    Mol Pharmacol; 1983 Mar; 23(2):453-60. PubMed ID: 6835203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies in detoxication; the metabolism of benzene; the determination of phenol in urine with 2:6-dichloroquinonechloroimide; the excretion of phenol, glucuronic acid and ethereal sulphate by rabbits receiving benzene and phenol; observations on the determination of catechol, quinol and muconic acid in urine.
    PORTEOUS JW; WILLIAMS RT
    Biochem J; 1949; 44(1):46-55. PubMed ID: 18127451
    [No Abstract]   [Full Text] [Related]  

  • 4. Determination of benzene metabolites in urine of mice by solid-phase extraction and high-performance liquid chromatography.
    Schad H; Schäfer F; Weber L; Seidel HJ
    J Chromatogr; 1992 Feb; 593(1-2):147-51. PubMed ID: 1639898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of hydroquinone on tyrosinase kinetics.
    Stratford MR; Ramsden CA; Riley PA
    Bioorg Med Chem; 2012 Jul; 20(14):4364-70. PubMed ID: 22698780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity in phenol-metabolizing capability of 809 strains of micromycetes.
    Krivobok S; Benoit-Guyod JL; Seigle-Murandi F; Steiman R; Thiault GA
    New Microbiol; 1994 Jan; 17(1):51-60. PubMed ID: 8127230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. trans,trans-Muconic acid, an open-chain urinary metabolite of benzene in mice. Quantification by high-pressure liquid chromatography.
    Gad-El Karim MM; Ramanujam VM; Legator MS
    Xenobiotica; 1985 Mar; 15(3):211-20. PubMed ID: 4024657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of phenol and catechol on the kinetics of human myeloperoxidase-dependent hydroquinone metabolism.
    Subrahmanyam VV; Kolachana P; Smith MT
    Adv Exp Med Biol; 1991; 283():377-81. PubMed ID: 1648866
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanistic aspects of the tyrosinase oxidation of hydroquinone.
    Ramsden CA; Riley PA
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2463-4. PubMed ID: 24767847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of sister-chromatid exchanges in human lymphocytes by microsomal activation of benzene metabolites.
    Morimoto K; Wolff S; Koizumi A
    Mutat Res; 1983 Mar; 119(3):355-60. PubMed ID: 6828070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cryptococcus neoformans: pigment formation on polyphenols].
    Pulverer G; Korth H
    Med Microbiol Immunol; 1971; 157(1):46-51. PubMed ID: 4947982
    [No Abstract]   [Full Text] [Related]  

  • 12. Development of liquid chromatography-electrospray ionization-tandem mass spectrometry methods for determination of urinary metabolites of benzene in humans.
    Melikian AA; Meng M; O'Connor R; Hu P; Thompson SM
    Res Rep Health Eff Inst; 1999 Jun; (87):1-36: discussion 37-43. PubMed ID: 10500979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of 4-nitrocatechol by Burkholderia cepacia: a plasmid-encoded novel pathway.
    Chauhan A; Samanta SK; Jain RK
    J Appl Microbiol; 2000 May; 88(5):764-72. PubMed ID: 10792536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiation of DNA adduct formation in HL-60 cells by combinations of benzene metabolites.
    Lévay G; Bodell WJ
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):7105-9. PubMed ID: 1496006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benzene disposition in the rat after exposure by inhalation.
    Rickert DE; Baker TS; Bus JS; Barrow CS; Irons RD
    Toxicol Appl Pharmacol; 1979 Jul; 49(3):417-23. PubMed ID: 473208
    [No Abstract]   [Full Text] [Related]  

  • 16. Lipoxygenase-inhibitory action of antiviral polymeric oxidation products of polyphenols.
    Schewe C; Klöcking R; Helbig B; Schewe T
    Biomed Biochim Acta; 1991; 50(3):299-305. PubMed ID: 1953697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of antitumoral activity of catechols in culture.
    Picardo M; Passi S; Nazzaro-Porro M; Breathnach A; Zompetta C; Faggioni A; Riley P
    Biochem Pharmacol; 1987 Feb; 36(4):417-25. PubMed ID: 3103624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and partial characterization of catechol 1,2-dioxygenase of phenol degrading yeast Candida tropicalis.
    Vilimkova L; Jechova J; Koubkova Z; Paca J; Kremlackova V; Poljakova J; Paca J; Stiborova M
    Neuro Endocrinol Lett; 2009; 30 Suppl 1():80-7. PubMed ID: 20027149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 19F nuclear magnetic resonance as a tool to investigate microbial degradation of fluorophenols to fluorocatechols and fluoromuconates.
    Boersma MG; Dinarieva TY; Middelhoven WJ; van Berkel WJ; Doran J; Vervoort J; Rietjens IM
    Appl Environ Microbiol; 1998 Apr; 64(4):1256-63. PubMed ID: 9546160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urinary excretion of phenol, catechol, hydroquinone, and muconic acid by workers occupationally exposed to benzene.
    Rothman N; Bechtold WE; Yin SN; Dosemeci M; Li GL; Wang YZ; Griffith WC; Smith MT; Hayes RB
    Occup Environ Med; 1998 Oct; 55(10):705-11. PubMed ID: 9930093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.