These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27758976)

  • 1. Electronic confinement in graphene quantum rings due to substrate-induced mass radial kink.
    Xavier LJ; da Costa DR; Chaves A; Pereira JM; Farias GA
    J Phys Condens Matter; 2016 Dec; 28(50):505501. PubMed ID: 27758976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valley filtering in graphene due to substrate-induced mass potential.
    da Costa DR; Chaves A; Farias GA; Peeters FM
    J Phys Condens Matter; 2017 Jun; 29(21):215502. PubMed ID: 28437252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dirac electrons in graphene-based quantum wires and quantum dots.
    Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM
    J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatically Confined Monolayer Graphene Quantum Dots with Orbital and Valley Splittings.
    Freitag NM; Chizhova LA; Nemes-Incze P; Woods CR; Gorbachev RV; Cao Y; Geim AK; Novoselov KS; Burgdörfer J; Libisch F; Morgenstern M
    Nano Lett; 2016 Sep; 16(9):5798-805. PubMed ID: 27466881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confinement of Dirac electrons in graphene magnetic quantum dots.
    Kuru Ş; Negro J; Sourrouille L
    J Phys Condens Matter; 2018 Sep; 30(36):365502. PubMed ID: 30051888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological kink states in graphene.
    Wang Z; Cheng S; Liu X; Jiang H
    Nanotechnology; 2021 Jul; 32(40):. PubMed ID: 34161935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic-Field-Tunable Valley-Contrasting Pseudomagnetic Confinement in Graphene.
    Ren YN; Zhuang YC; Sun QF; He L
    Phys Rev Lett; 2022 Aug; 129(7):076802. PubMed ID: 36018692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergent Dirac Gullies and Gully-Symmetry-Breaking Quantum Hall States in ABA Trilayer Graphene.
    Zibrov AA; Rao P; Kometter C; Spanton EM; Li JIA; Dean CR; Taniguchi T; Watanabe K; Serbyn M; Young AF
    Phys Rev Lett; 2018 Oct; 121(16):167601. PubMed ID: 30387651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The topology and robustness of two Dirac cones in S-graphene: A tight binding approach.
    Bandyopadhyay A; Datta S; Jana D; Nath S; Uddin MM
    Sci Rep; 2020 Feb; 10(1):2502. PubMed ID: 32051466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Nanobubbles as Valley Filters and Beam Splitters.
    Settnes M; Power SR; Brandbyge M; Jauho AP
    Phys Rev Lett; 2016 Dec; 117(27):276801. PubMed ID: 28084750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional quantum Hall States of Dirac electrons in graphene.
    Apalkov VM; Chakraborty T
    Phys Rev Lett; 2006 Sep; 97(12):126801. PubMed ID: 17025990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant Valley Splitting and Valley Polarized Plasmonics in Group V Transition-Metal Dichalcogenide Monolayers.
    Zhou J; Jena P
    J Phys Chem Lett; 2017 Dec; 8(23):5764-5770. PubMed ID: 29129083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-one-dimensional electronic states induced by an extended line defect in graphene: an analytic solution.
    Lü X; Jiang L; Zheng Y
    J Phys Condens Matter; 2014 Jan; 26(3):035302. PubMed ID: 24356790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulation and Characterization of the Valley-Polarized Topological Kink States in Graphene-Based Interferometers.
    Cheng SG; Liu H; Jiang H; Sun QF; Xie XC
    Phys Rev Lett; 2018 Oct; 121(15):156801. PubMed ID: 30362779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extreme sensitivity of the electric-field-induced band gap to the electronic topological transition in sliding bilayer graphene.
    Lee KW; Lee CE
    Sci Rep; 2015 Dec; 5():17490. PubMed ID: 26635178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust effective Zeeman energy in monolayer MoS2 quantum dots.
    Dias AC; Fu J; Villegas-Lelovsky L; Qu F
    J Phys Condens Matter; 2016 Sep; 28(37):375803. PubMed ID: 27421077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling-barrier and non-parabolicity effects on the conduction electron cyclotron effective mass and Landé [Formula: see text] factor in GaAs double quantum wells.
    Darío Perea J; Mejía-Salazar JR; Porras-Montenegro N
    J Phys Condens Matter; 2011 Feb; 23(6):065303. PubMed ID: 21406924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Planar Dirac electrons in magnetic quantum dots.
    Yang N; Zhu JL
    J Phys Condens Matter; 2012 May; 24(21):215303. PubMed ID: 22543306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Existence of nontrivial topologically protected states at grain boundaries in bilayer graphene: signatures and electrical switching.
    Jaskólski W; Pelc M; Chico L; Ayuela A
    Nanoscale; 2016 Mar; 8(11):6079-84. PubMed ID: 26931739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magneto-transport properties of gapped graphene.
    Jiang L; Zheng Y; Li H; Shen H
    Nanotechnology; 2010 Apr; 21(14):145703. PubMed ID: 20220217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.