These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27759019)

  • 1. Robust ultra-low-friction state of graphene via moiré superlattice confinement.
    Zheng X; Gao L; Yao Q; Li Q; Zhang M; Xie X; Qiao S; Wang G; Ma T; Di Z; Luo J; Wang X
    Nat Commun; 2016 Oct; 7():13204. PubMed ID: 27759019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of the moiré superlattice scale lateral force modulation of graphene on a transition metal substrate.
    Gao L; Chen X; Ma Y; Yan Y; Ma T; Su Y; Qiao L
    Nanoscale; 2018 Jun; 10(22):10576-10583. PubMed ID: 29808195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge transport through one-dimensional Moiré crystals.
    Bonnet R; Lherbier A; Barraud C; Della Rocca ML; Lafarge P; Charlier JC
    Sci Rep; 2016 Jan; 6():19701. PubMed ID: 26786067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation Coupled Moiré Mapping of Superlubricity in Graphene.
    Bai H; Zou G; Bao H; Li S; Ma F; Gao H
    ACS Nano; 2023 Jul; 17(13):12594-12602. PubMed ID: 37338168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolving quality of frictional contact with graphene.
    Li S; Li Q; Carpick RW; Gumbsch P; Liu XZ; Ding X; Sun J; Li J
    Nature; 2016 Nov; 539(7630):541-545. PubMed ID: 27882973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moiré-Tile Manipulation-Induced Friction Switch of Graphene on a Platinum Surface.
    Liu Z; Vilhena JG; Hinaut A; Scherb S; Luo F; Zhang J; Glatzel T; Gnecco E; Meyer E
    Nano Lett; 2023 May; 23(10):4693-4697. PubMed ID: 36917620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moiré Superlattice Structure in Two-Dimensional Catalysts: Synthesis, Property and Activity.
    Wang L; Yin S; Yang J; Dou SX
    Small; 2023 Jul; 19(27):e2300165. PubMed ID: 36974572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction.
    Kwon S; Lee KE; Lee H; Koh SJ; Ko JH; Kim YH; Kim SO; Park JY
    J Phys Chem B; 2018 Jan; 122(2):543-547. PubMed ID: 28926260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-Graphene Interactions: Friction, Superlubricity, and Exfoliation.
    Sinclair RC; Suter JL; Coveney PV
    Adv Mater; 2018 Mar; 30(13):e1705791. PubMed ID: 29436032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring the Nanostructure of Graphene as an Oil-Based Additive: toward Synergistic Lubrication with an Amorphous Carbon Film.
    Li X; Zhang D; Xu X; Lee KR
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43320-43330. PubMed ID: 32851840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain Engineering Modulates Graphene Interlayer Friction by Moiré Pattern Evolution.
    Wang K; Qu C; Wang J; Ouyang W; Ma M; Zheng Q
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36169-36176. PubMed ID: 31486630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Simulation for 2D Lubricating Materials in Realistic Environments: From Classical to Quantum Mechanical Methods.
    Hao Y; Sun TY; Ye JT; Huang LF; Wang LP
    Adv Mater; 2024 Apr; ():e2312429. PubMed ID: 38655823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial Atomic Structure of Twisted Few-Layer Graphene.
    Ishikawa R; Lugg NR; Inoue K; Sawada H; Taniguchi T; Shibata N; Ikuhara Y
    Sci Rep; 2016 Feb; 6():21273. PubMed ID: 26888259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of substrate and tip characteristics on the surface friction of fluorinated graphene.
    Ma Y; Liu Z; Gao L; Yan Y; Qiao L
    RSC Adv; 2020 Mar; 10(18):10888-10896. PubMed ID: 35492954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between interfacial shear and friction force in 2D materials.
    Rejhon M; Lavini F; Khosravi A; Shestopalov M; Kunc J; Tosatti E; Riedo E
    Nat Nanotechnol; 2022 Dec; 17(12):1280-1287. PubMed ID: 36316542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research Progress in Application of 2D Materials in Liquid-Phase Lubrication System.
    Liu L; Zhou M; Li X; Jin L; Su G; Mo Y; Li L; Zhu H; Tian Y
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30061482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wear Resistance Limited by Step Edge Failure: The Rise and Fall of Graphene as an Atomically Thin Lubricating Material.
    Qi Y; Liu J; Zhang J; Dong Y; Li Q
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):1099-1106. PubMed ID: 28073278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic Scale Simulation on the Anti-Pressure and Friction Reduction Mechanisms of MoS₂ Monolayer.
    Liu Y; Liu Y; Ma T; Luo J
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29702560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning friction to a superlubric state via in-plane straining.
    Zhang S; Hou Y; Li S; Liu L; Zhang Z; Feng XQ; Li Q
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24452-24456. PubMed ID: 31659028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-Wear-Resistant MXene-Based Composite Coating via in Situ Formed Nanostructured Tribofilm.
    Yin X; Jin J; Chen X; Rosenkranz A; Luo J
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32569-32576. PubMed ID: 31414588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.