These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27759078)

  • 41. Biological control of Tetranychus urticae by Phytoseiulus macropilis and Macrolophus pygmaeus in tomato greenhouses.
    Gigon V; Camps C; Le Corff J
    Exp Appl Acarol; 2016 Jan; 68(1):55-70. PubMed ID: 26481345
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The evaluation of extraction techniques for Tetranychus urticae (Acari: Tetranychidae) from apple (Malus domestica) and cherry (Prunus avium) leaves.
    Harris AL; Ullah R; Fountain MT
    Exp Appl Acarol; 2017 Aug; 72(4):367-377. PubMed ID: 28831615
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Population models for threshold-based control of Tetranychus urticae in small-scale Kenyan tomato fields and for evaluating weather and host plant species effects.
    Knapp M; Sarr I; Gilioli G; Baumgärtner J
    Exp Appl Acarol; 2006; 39(3-4):195-212. PubMed ID: 16897565
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation and characterization of polymorphic microsatellite markers in Tetranychus urticae and cross amplification in other Tetranychidae and Phytoseiidae species of economic importance.
    Sabater-Muñoz B; Pascual-Ruiz S; Gómez-Martínez MA; Jacas JA; Hurtado MA
    Exp Appl Acarol; 2012 May; 57(1):37-51. PubMed ID: 22349944
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Within-plant distribution of twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), on ivy geranium: development of a presence-absence sampling plan.
    Opit GP; Margolies DC; Nechols JR
    J Econ Entomol; 2003 Apr; 96(2):482-8. PubMed ID: 14994819
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acaricide resistance in Tetranychus urticae (Acari: Tetranychidae) populations from Cyprus.
    Vassiliou VA; Kitsis P
    J Econ Entomol; 2013 Aug; 106(4):1848-54. PubMed ID: 24020302
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Different feeding behaviours in a single predatory mite species. 2. Responses of two populations of Phytoseiulus longipes (Acari: Phytoseiidae) to various prey species, prey stages and plant substrates.
    Ferrero M; Tixier MS; Kreiter S
    Exp Appl Acarol; 2014 Mar; 62(3):325-35. PubMed ID: 24114341
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The genome of Tetranychus urticae reveals herbivorous pest adaptations.
    Grbić M; Van Leeuwen T; Clark RM; Rombauts S; Rouzé P; Grbić V; Osborne EJ; Dermauw W; Ngoc PC; Ortego F; Hernández-Crespo P; Diaz I; Martinez M; Navajas M; Sucena É; Magalhães S; Nagy L; Pace RM; Djuranović S; Smagghe G; Iga M; Christiaens O; Veenstra JA; Ewer J; Villalobos RM; Hutter JL; Hudson SD; Velez M; Yi SV; Zeng J; Pires-daSilva A; Roch F; Cazaux M; Navarro M; Zhurov V; Acevedo G; Bjelica A; Fawcett JA; Bonnet E; Martens C; Baele G; Wissler L; Sanchez-Rodriguez A; Tirry L; Blais C; Demeestere K; Henz SR; Gregory TR; Mathieu J; Verdon L; Farinelli L; Schmutz J; Lindquist E; Feyereisen R; Van de Peer Y
    Nature; 2011 Nov; 479(7374):487-92. PubMed ID: 22113690
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic structure of a phytophagous mite species affected by crop practices: the case of Tetranychus urticae in clementine mandarins.
    Pascual-Ruiz S; Gómez-Martinez MA; Ansaloni T; Segarra-Moragues JG; Sabater-Muñoz B; Jacas JA; Hurtado-Ruiz MA
    Exp Appl Acarol; 2014 Apr; 62(4):477-98. PubMed ID: 24233157
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interspecific competition counteracts negative effects of dispersal on adaptation of an arthropod herbivore to a new host.
    Alzate A; Bisschop K; Etienne RS; Bonte D
    J Evol Biol; 2017 Nov; 30(11):1966-1977. PubMed ID: 28556282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biological control of Eotetranychus lewisi and Tetranychus urticae (Acari: Tetranychidae) on strawberry by four phytoseiids (Acari: Phytoseiidae).
    Howell AD; Daugovish O
    J Econ Entomol; 2013 Feb; 106(1):80-5. PubMed ID: 23448018
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Induced response of tomato plants to injury by green and red strains of Tetranychus urticae.
    Takabayashi J; Shimoda T; Dicke M; Ashihara W; Takafuji A
    Exp Appl Acarol; 2000; 24(5-6):377-83. PubMed ID: 11156163
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of global warming scenarios on life-history traits of Tetranychus evansi (Acari: Tetranychidae).
    Ghazy NA; Gotoh T; Suzuki T
    BMC Ecol; 2019 Nov; 19(1):48. PubMed ID: 31771563
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Repellent effects of various cherry tomato accessions on the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae).
    Lucini T; Resende JT; Oliveira JR; Scabeni CJ; Zeist AR; Resende NC
    Genet Mol Res; 2016 Mar; 15(1):. PubMed ID: 27050983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Indirect selection of industrial tomato genotypes that are resistant to spider mites (Tetranychus urticae).
    Baier JE; Resende JT; Faria MV; Schwarz K; Meert L
    Genet Mol Res; 2015 Jan; 14(1):244-52. PubMed ID: 25729956
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities.
    Glas JJ; Alba JM; Simoni S; Villarroel CA; Stoops M; Schimmel BC; Schuurink RC; Sabelis MW; Kant MR
    BMC Biol; 2014 Nov; 12():98. PubMed ID: 25403155
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Long-Term Population Studies Uncover the Genome Structure and Genetic Basis of Xenobiotic and Host Plant Adaptation in the Herbivore
    Wybouw N; Kosterlitz O; Kurlovs AH; Bajda S; Greenhalgh R; Snoeck S; Bui H; Bryon A; Dermauw W; Van Leeuwen T; Clark RM
    Genetics; 2019 Apr; 211(4):1409-1427. PubMed ID: 30745439
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temperature-dependent, behavioural, and transcriptional variability of a tritrophic interaction consisting of bean, herbivorous mite, and predator.
    Ozawa R; Nishimura O; Yazawa S; Muroi A; Takabayashi J; Arimura G
    Mol Ecol; 2012 Nov; 21(22):5624-35. PubMed ID: 23043221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Specific sequence of arrival promotes coexistence via spatial niche pre-emption by the weak competitor.
    Fragata I; Costa-Pereira R; Kozak M; Majer A; Godoy O; Magalhães S
    Ecol Lett; 2022 Jul; 25(7):1629-1639. PubMed ID: 35596732
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative genome-wide transcriptome analysis of Vitis vinifera responses to adapted and non-adapted strains of two-spotted spider mite, Tetranyhus urticae.
    Díaz-Riquelme J; Zhurov V; Rioja C; Pérez-Moreno I; Torres-Pérez R; Grimplet J; Carbonell-Bejerano P; Bajda S; Van Leeuwen T; Martínez-Zapater JM; Grbic M; Grbic V
    BMC Genomics; 2016 Jan; 17():74. PubMed ID: 26801623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.