These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27759264)

  • 1. Potential Carbon Losses From Peat Profiles: Effects of Temperature, Drought Cycles, and Fire.
    Hogg EH; Lieffers VJ; Wein RW
    Ecol Appl; 1992 Aug; 2(3):298-306. PubMed ID: 27759264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats.
    Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S
    Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems.
    Kim Y; Ullah S; Roulet NT; Moore TR
    Sci Total Environ; 2015 Apr; 511():381-92. PubMed ID: 25555258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland.
    Hirano T; Kusin K; Limin S; Osaki M
    Glob Chang Biol; 2014 Feb; 20(2):555-65. PubMed ID: 23775585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constraints on microbial communities, decomposition and methane production in deep peat deposits.
    Kluber LA; Johnston ER; Allen SA; Hendershot JN; Hanson PJ; Schadt CW
    PLoS One; 2020; 15(2):e0223744. PubMed ID: 32027653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Severe wildfire exposes remnant peat carbon stocks to increased post-fire drying.
    Kettridge N; Lukenbach MC; Hokanson KJ; Devito KJ; Petrone RM; Mendoza CA; Waddington JM
    Sci Rep; 2019 Mar; 9(1):3727. PubMed ID: 30842569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition.
    Flanagan NE; Wang H; Winton S; Richardson CJ
    Glob Chang Biol; 2020 Jul; 26(7):3930-3946. PubMed ID: 32388914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for older carbon loss with lowered water tables and changing plant functional groups in peatlands.
    Stuart JEM; Tucker CL; Lilleskov EA; Kolka RK; Chimner RA; Heckman KA; Kane ES
    Glob Chang Biol; 2023 Feb; 29(3):780-793. PubMed ID: 36308039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic matter composition and thermal stability influence greenhouse gases production in subtropical peatland under different vegetation types.
    Akinbi GO; Ngatia LW; Grace JM; Fu R; Tan C; Olaborode SO; Abichou T; Taylor RW
    Heliyon; 2022 Nov; 8(11):e11547. PubMed ID: 36406684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in the archaeal community and associated methanogenesis in peat profiles of three typical peatland types in China.
    Chen X; Xue D; Wang Y; Qiu Q; Wu L; Wang M; Liu J; Chen H
    Environ Microbiome; 2023 Jun; 18(1):48. PubMed ID: 37280702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of peat carbon at different depths to simulated warming and oxidizing.
    Liu L; Chen H; Zhu Q; Yang G; Zhu E; Hu J; Peng C; Jiang L; Zhan W; Ma T; He Y; Zhu D
    Sci Total Environ; 2016 Apr; 548-549():429-440. PubMed ID: 26826851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO
    Hoyt AM; Gandois L; Eri J; Kai FM; Harvey CF; Cobb AR
    Glob Chang Biol; 2019 Sep; 25(9):2885-2899. PubMed ID: 31100190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compositional stability of peat in ecosystem-scale warming mesocosms.
    Baysinger MR; Wilson RM; Hanson PJ; Kostka JE; Chanton JP
    PLoS One; 2022; 17(3):e0263994. PubMed ID: 35235578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short period of oxygenation releases latch on peat decomposition.
    Brouns K; Verhoeven JT; Hefting MM
    Sci Total Environ; 2014 May; 481():61-8. PubMed ID: 24583945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can rain suppress smoldering peat fire?
    Lin S; Cheung YK; Xiao Y; Huang X
    Sci Total Environ; 2020 Jul; 727():138468. PubMed ID: 32334212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oil palm 'slash-and-burn' practice increases post-fire greenhouse gas emissions and nutrient concentrations in burnt regions of an agricultural tropical peatland.
    Dhandapani S; Evers S
    Sci Total Environ; 2020 Nov; 742():140648. PubMed ID: 32721749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of peatland carbon to rising temperatures.
    Wilson RM; Hopple AM; Tfaily MM; Sebestyen SD; Schadt CW; Pfeifer-Meister L; Medvedeff C; McFarlane KJ; Kostka JE; Kolton M; Kolka RK; Kluber LA; Keller JK; Guilderson TP; Griffiths NA; Chanton JP; Bridgham SD; Hanson PJ
    Nat Commun; 2016 Dec; 7():13723. PubMed ID: 27958276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon storage dynamics in peatlands: Comparing recent- and long-term accumulation histories in southern Patagonia.
    Bunsen MS; Loisel J
    Glob Chang Biol; 2020 Oct; 26(10):5778-5795. PubMed ID: 32623771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature and organic carbon quality control the anaerobic carbon mineralization in peat profiles via modulating microbes: A case study of Changbai Mountain.
    Wang H; Xu Y; Kumar A; Knorr KH; Zhao X; Perez JPH; Sun G; Yu ZG
    Environ Res; 2023 Nov; 237(Pt 1):116904. PubMed ID: 37595828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.