These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27759291)

  • 1. Direct and Indirect Competition Between Spider Mites Feeding on Grapes.
    English-Loeb GM; Karban R; Hougen-Eitzman D
    Ecol Appl; 1993 Nov; 3(4):699-707. PubMed ID: 27759291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of interspecific competition that result in successful control of Pacific mites following inoculations of Willamette mites on grapevines.
    Hougen-Eitzman D; Karban R
    Oecologia; 1995 Aug; 103(2):157-161. PubMed ID: 28306768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predator-mediated apparent competition between two herbivores that feed on grapevines.
    Karban R; Hougen-Eitzmann D; English-Loeb G
    Oecologia; 1994 May; 97(4):508-511. PubMed ID: 28313740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions in an acarine predator guild: impact on Typhlodromalus aripo abundance and biological control of cassava green mite in Benin, West Africa.
    Onzo A; Hanna R; Sabelis MW
    Exp Appl Acarol; 2003; 31(3-4):225-41. PubMed ID: 14974688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological control of spider mites on grape by phytoseiid mites (Acari: Tetranychidae, Phytoseiidae): emphasis on regional aspects.
    Prischmann DA; Croft BA; Luh HK
    J Econ Entomol; 2002 Apr; 95(2):340-7. PubMed ID: 12020011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal within-plant distribution of the spider mite Tetranychus urticae and associated specialist and generalist predators.
    Walzer A; Moder K; Schausberger P
    Bull Entomol Res; 2009 Oct; 99(5):457-66. PubMed ID: 19159502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae).
    Duso C; Vettorazzo E
    Exp Appl Acarol; 1999 Sep; 23(9):741-63. PubMed ID: 10581713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early establishment of the phytoseiid mite Amblyseius swirskii (Acari: Phytoseiidae) on pepper seedlings in a Predator-in-First approach.
    Kumar V; Xiao Y; McKenzie CL; Osborne LS
    Exp Appl Acarol; 2015 Apr; 65(4):465-81. PubMed ID: 25772442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days.
    Nachappa P; Margolies DC; Nechols JR; Loughin T
    Exp Appl Acarol; 2006; 40(3-4):231-9. PubMed ID: 17225078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host plant manipulation of natural enemies: leaf domatia protect beneficial mites from insect predators.
    Norton AP; English-Loeb G; Belden E
    Oecologia; 2001 Feb; 126(4):535-542. PubMed ID: 28547239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis.
    Cakmak I; Janssen A; Sabelis MW
    Exp Appl Acarol; 2006; 38(1):33-46. PubMed ID: 16550333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pest response in packed table grapes to low temperature storage combined with slow-release sulfur dioxide pads in basic and large-scale tests.
    Yokoyama VY; Miller GT; Crisosto CH
    J Econ Entomol; 2001 Aug; 94(4):984-8. PubMed ID: 11561862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Herbivorous mites as ecological engineers: indirect effects on arthropods inhabiting papaya foliage.
    Fournier V; Rosenheim JA; Brodeur J; Laney LO; Johnson MW
    Oecologia; 2003 May; 135(3):442-50. PubMed ID: 12721835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geotaxis and leaf-surface preferences mitigate negative effects of a predatory mite on an herbivorous mite.
    Sudo M; Osakabe M
    Exp Appl Acarol; 2013 Apr; 59(4):409-20. PubMed ID: 23011108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Occurrence of Apparent Competition and Apparent Mutualism in a Modeled Greenhouse System with Two Non-competing Pests and a Shared Biocontrol Agent.
    Costa MIS; Anjos L
    Neotrop Entomol; 2020 Dec; 49(6):874-881. PubMed ID: 33074444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf pubescence and two-spotted spider mite webbing influence phytoseiid behavior and population density.
    Roda A; Nyrop J; English-Loeb G; Dicke M
    Oecologia; 2001 Dec; 129(4):551-560. PubMed ID: 24577695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neoseiulus paspalivorus, a predator from coconut, as a candidate for controlling dry bulb mites infesting stored tulip bulbs.
    Lesna I; da Silva FR; Sato Y; Sabelis MW; Lommen ST
    Exp Appl Acarol; 2014 Jun; 63(2):189-204. PubMed ID: 24509788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plants, mites and mutualism: leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae).
    Grostal R; O'Dowd DJ
    Oecologia; 1994 Apr; 97(3):308-315. PubMed ID: 28313624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditions under which plants help herbivores and benefit from predators through apparent competition.
    Yamamura N
    Ecology; 2007 Jun; 88(6):1593-9. PubMed ID: 17601151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoseiid mites benefited from organic fertilization by increasing the population of Tyrophagus mites in apple orchards.
    Komagata Y; Oe T; Sekine T; Shimmura R; Toyama M; Kishimoto H
    Exp Appl Acarol; 2024 Jul; ():. PubMed ID: 38995469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.