BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 27759335)

  • 1. Simple and Rapid Bioink Jet Printing for Multiscale Cell Adhesion Islands.
    Mecozzi L; Gennari O; Rega R; Battista L; Ferraro P; Grilli S
    Macromol Biosci; 2017 Mar; 17(3):. PubMed ID: 27759335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of living cells on the bioink printability during laser printing.
    Zhang Z; Xu C; Xiong R; Chrisey DB; Huang Y
    Biomicrofluidics; 2017 May; 11(3):034120. PubMed ID: 28670353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
    Ouyang L; Yao R; Zhao Y; Sun W
    Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion.
    Zhang N; Pompe T; Amin I; Luxenhofer R; Werner C; Jordan R
    Macromol Biosci; 2012 Jul; 12(7):926-36. PubMed ID: 22610725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells.
    Kuddannaya S; Chuah YJ; Lee MH; Menon NV; Kang Y; Zhang Y
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9777-84. PubMed ID: 24015724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of hASCs-laden structures using extrusion-based cell printing supplemented with an electric field.
    Yeo M; Ha J; Lee H; Kim G
    Acta Biomater; 2016 Jul; 38():33-43. PubMed ID: 27095485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of cell adhesion complexes by surface protein patterns.
    Pesen D; Haviland DB
    ACS Appl Mater Interfaces; 2009 Mar; 1(3):543-8. PubMed ID: 20355973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Resolved Imaging Study of Jetting Dynamics during Laser Printing of Viscoelastic Alginate Solutions.
    Zhang Z; Xiong R; Mei R; Huang Y; Chrisey DB
    Langmuir; 2015 Jun; 31(23):6447-56. PubMed ID: 26011320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Make it spin: individual trapping of sperm for analysis and recovery using micro-contact printing.
    Frimat JP; Bronkhorst M; de Wagenaar B; Bomer JG; van der Heijden F; van den Berg A; Segerink LI
    Lab Chip; 2014 Aug; 14(15):2635-41. PubMed ID: 24615285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fast flexible ink-jet printing method for patterning dissociated neurons in culture.
    Sanjana NE; Fuller SB
    J Neurosci Methods; 2004 Jul; 136(2):151-63. PubMed ID: 15183267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.
    Zhao Y; Li Y; Mao S; Sun W; Yao R
    Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution Patterning Using Two Modes of Electrohydrodynamic Jet: Drop on Demand and Near-field Electrospinning.
    Phung TH; Oh S; Kwon KS
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30059021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative approach for determining the role of geometrical constraints when shaping mesenchymal condensations.
    Onesto V; Barrell WB; Okesola M; Amato F; Gentile F; Liu KJ; Chiappini C
    Biomed Microdevices; 2019 Apr; 21(2):44. PubMed ID: 30963305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing.
    Lee A; Jin H; Dang HW; Choi KH; Ahn KH
    Langmuir; 2013 Nov; 29(44):13630-9. PubMed ID: 24102618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein covalently conjugated SU-8 surface for the enhancement of mesenchymal stem cell adhesion and proliferation.
    Xue P; Bao J; Chuah YJ; Menon NV; Zhang Y; Kang Y
    Langmuir; 2014 Mar; 30(11):3110-7. PubMed ID: 24597829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcontact printing and microspotting as methods for direct protein patterning on plasma deposited polyethylene oxide: application to stem cell patterning.
    Ruiz A; Zychowicz M; Ceriotti L; Mehn D; Sirghi L; Rauscher H; Mannelli I; Colpo P; Buzanska L; Rossi F
    Biomed Microdevices; 2013 Jun; 15(3):495-507. PubMed ID: 23404262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and Printing of Microdroplets Using Straight Electrode-Based Electrohydrodynamic Jet for Flexible Substrate.
    Wang D; Abbas Z; Lu L; Liu C; Zhang J; Pu C; Li Y; Yin P; Zhang X; Liang J
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink.
    Xu C; Zhang M; Huang Y; Ogale A; Fu J; Markwald RR
    Langmuir; 2014 Aug; 30(30):9130-8. PubMed ID: 25005170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell micropatterning on an albumin-based substrate using an inkjet printing technique.
    Yamazoe H; Tanabe T
    J Biomed Mater Res A; 2009 Dec; 91(4):1202-9. PubMed ID: 19148930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of Impingement Types and Printing Quality during Laser Printing of Viscoelastic Alginate Solutions.
    Zhang Z; Xiong R; Corr DT; Huang Y
    Langmuir; 2016 Mar; 32(12):3004-14. PubMed ID: 26934283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.