BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27759487)

  • 1. Crosstalk between pluripotency factors and higher-order chromatin organization.
    Lopes Novo C; Rugg-Gunn P
    Nucleus; 2016 Sep; 7(5):447-452. PubMed ID: 27759487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells.
    Novo CL; Tang C; Ahmed K; Djuric U; Fussner E; Mullin NP; Morgan NP; Hayre J; Sienerth AR; Elderkin S; Nishinakamura R; Chambers I; Ellis J; Bazett-Jones DP; Rugg-Gunn PJ
    Genes Dev; 2016 May; 30(9):1101-15. PubMed ID: 27125671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How cells build totipotency and pluripotency: nuclear, chromatin and transcriptional architecture.
    Dang-Nguyen TQ; Torres-Padilla ME
    Curr Opin Cell Biol; 2015 Jun; 34():9-15. PubMed ID: 25935759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterochromatin remodeling in embryonic stem cells proceeds through stochastic de-stabilization of regional steady-states.
    Christogianni A; Chatzantonaki E; Soupsana K; Giannios I; Platania A; Politou AS; Georgatos S
    Biochim Biophys Acta Gene Regul Mech; 2017 Jun; 1860(6):661-673. PubMed ID: 28115295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell 3D genome structure reveals distinct human pluripotent states.
    Li N; Jin K; Liu B; Yang M; Shi P; Heng D; Wang J; Liu L
    Genome Biol; 2024 May; 25(1):122. PubMed ID: 38741214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maintenance of active chromatin states by HMGN2 is required for stem cell identity in a pluripotent stem cell model.
    Garza-Manero S; Sindi AAA; Mohan G; Rehbini O; Jeantet VHM; Bailo M; Latif FA; West MP; Gurden R; Finlayson L; Svambaryte S; West AG; West KL
    Epigenetics Chromatin; 2019 Dec; 12(1):73. PubMed ID: 31831052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin plasticity in pluripotent cells.
    Melcer S; Meshorer E
    Essays Biochem; 2010 Sep; 48(1):245-62. PubMed ID: 20822497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency.
    Schlesinger S; Meshorer E
    Dev Cell; 2019 Jan; 48(2):135-150. PubMed ID: 30695696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs.
    Savić N; Bär D; Leone S; Frommel SC; Weber FA; Vollenweider E; Ferrari E; Ziegler U; Kaech A; Shakhova O; Cinelli P; Santoro R
    Cell Stem Cell; 2014 Dec; 15(6):720-34. PubMed ID: 25479748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanog RNA-binding proteins YBX1 and ILF3 affect pluripotency of embryonic stem cells.
    Guo C; Xue Y; Yang G; Yin S; Shi W; Cheng Y; Yan X; Fan S; Zhang H; Zeng F
    Cell Biol Int; 2016 Aug; 40(8):847-60. PubMed ID: 26289635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming.
    Apostolou E; Ferrari F; Walsh RM; Bar-Nur O; Stadtfeld M; Cheloufi S; Stuart HT; Polo JM; Ohsumi TK; Borowsky ML; Kharchenko PV; Park PJ; Hochedlinger K
    Cell Stem Cell; 2013 Jun; 12(6):699-712. PubMed ID: 23665121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large chromatin domains in pluripotent and differentiated cells.
    Hu S; Cheng L; Wen B
    Acta Biochim Biophys Sin (Shanghai); 2012 Jan; 44(1):48-53. PubMed ID: 22194013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells.
    Houlard M; Berlivet S; Probst AV; Quivy JP; Héry P; Almouzni G; Gérard M
    PLoS Genet; 2006 Nov; 2(11):e181. PubMed ID: 17083276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rearranging the chromatin for pluripotency.
    Ferrari F; Apostolou E; Park PJ; Hochedlinger K
    Cell Cycle; 2014; 13(2):167-8. PubMed ID: 24241209
    [No Abstract]   [Full Text] [Related]  

  • 15. Long-Range Enhancer Interactions Are Prevalent in Mouse Embryonic Stem Cells and Are Reorganized upon Pluripotent State Transition.
    Novo CL; Javierre BM; Cairns J; Segonds-Pichon A; Wingett SW; Freire-Pritchett P; Furlan-Magaril M; Schoenfelder S; Fraser P; Rugg-Gunn PJ
    Cell Rep; 2018 Mar; 22(10):2615-2627. PubMed ID: 29514091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin plasticity and genome organization in pluripotent embryonic stem cells.
    Mattout A; Meshorer E
    Curr Opin Cell Biol; 2010 Jun; 22(3):334-41. PubMed ID: 20226651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo.
    Ahmed K; Dehghani H; Rugg-Gunn P; Fussner E; Rossant J; Bazett-Jones DP
    PLoS One; 2010 May; 5(5):e10531. PubMed ID: 20479880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic 3D Chromatin Reorganization during Establishment and Maintenance of Pluripotency.
    Pelham-Webb B; Murphy D; Apostolou E
    Stem Cell Reports; 2020 Dec; 15(6):1176-1195. PubMed ID: 33242398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanog and transcriptional networks in embryonic stem cell pluripotency.
    Pan G; Thomson JA
    Cell Res; 2007 Jan; 17(1):42-9. PubMed ID: 17211451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and spatial chromatin features at developmental gene loci in human pluripotent stem cells.
    Ikeda H; Sone M; Yamanaka S; Yamamoto T
    Nat Commun; 2017 Nov; 8(1):1616. PubMed ID: 29158493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.