These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27760155)

  • 1. Spatiotemporal Variation in Distance Dependent Animal Movement Contacts: One Size Doesn't Fit All.
    Brommesson P; Wennergren U; Lindström T
    PLoS One; 2016; 11(10):e0164008. PubMed ID: 27760155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian analysis of animal movements related to factors at herd and between herd levels: Implications for disease spread modeling.
    Lindström T; Sisson SA; Lewerin SS; Wennergren U
    Prev Vet Med; 2011 Mar; 98(4):230-42. PubMed ID: 21176982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of distance related probability of animal movements between holdings and implications for disease spread modeling.
    Lindström T; Sisson SA; Nöremark M; Jonsson A; Wennergren U
    Prev Vet Med; 2009 Oct; 91(2-4):85-94. PubMed ID: 19540009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Goodness-of-fit measures for individual-level models of infectious disease in a Bayesian framework.
    Gardner A; Deardon R; Darlington G
    Spat Spatiotemporal Epidemiol; 2011 Dec; 2(4):273-81. PubMed ID: 22748225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating animal movement contacts between holdings of different production types.
    Lindström T; Sisson SA; Lewerin SS; Wennergren U
    Prev Vet Med; 2010 Jun; 95(1-2):23-31. PubMed ID: 20356640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network analysis of cattle movements in Uruguay: Quantifying heterogeneity for risk-based disease surveillance and control.
    VanderWaal KL; Picasso C; Enns EA; Craft ME; Alvarez J; Fernandez F; Gil A; Perez A; Wells S
    Prev Vet Med; 2016 Jan; 123():12-22. PubMed ID: 26708252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical Bayesian modeling of heterogeneous variances in average daily weight gain of commercial feedlot cattle.
    Cernicchiaro N; Renter DG; Xiang S; White BJ; Bello NM
    J Anim Sci; 2013 Jun; 91(6):2910-9. PubMed ID: 23482583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling two strains of disease via aggregate-level infectivity curves.
    Romanescu R; Deardon R
    J Math Biol; 2016 Apr; 72(5):1195-224. PubMed ID: 26084408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting farm-level animal populations using environmental and socioeconomic variables.
    van Andel M; Jewell C; McKenzie J; Hollings T; Robinson A; Burgman M; Bingham P; Carpenter T
    Prev Vet Med; 2017 Sep; 145():121-132. PubMed ID: 28903868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of between-farm transmission of porcine reproductive and respiratory syndrome virus in Ontario, Canada using the North American Animal Disease Spread Model.
    Thakur KK; Revie CW; Hurnik D; Poljak Z; Sanchez J
    Prev Vet Med; 2015 Mar; 118(4):413-26. PubMed ID: 25636969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling seasonality in space-time infectious disease surveillance data.
    Held L; Paul M
    Biom J; 2012 Nov; 54(6):824-43. PubMed ID: 23034894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bayesian approach for modeling cattle movements in the United States: scaling up a partially observed network.
    Lindström T; Grear DA; Buhnerkempe M; Webb CT; Miller RS; Portacci K; Wennergren U
    PLoS One; 2013; 8(1):e53432. PubMed ID: 23308223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical statistical modelling of influenza epidemic dynamics in space and time.
    Mugglin AS; Cressie N; Gemmell I
    Stat Med; 2002 Sep; 21(18):2703-21. PubMed ID: 12228886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of lambing distribution in the Ripollesa sheep breed. I. Development and comparison of circular von Mises models.
    Casellas J; Martín de Hijas-Villalba M; Id-Lahoucine S
    Animal; 2019 Oct; 13(10):2133-2139. PubMed ID: 30837023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Meta-analysis of the Italian studies on short-term effects of air pollution].
    Biggeri A; Bellini P; Terracini B;
    Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting animal home-range structure and transitions using a multistate Ornstein-Uhlenbeck biased random walk.
    Breed GA; Golson EA; Tinker MT
    Ecology; 2017 Jan; 98(1):32-47. PubMed ID: 27893946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geographically dependent individual-level models for infectious diseases transmission.
    Mahsin MD; Deardon R; Brown P
    Biostatistics; 2022 Jan; 23(1):1-17. PubMed ID: 32118253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Bayesian spatiotemporal analysis of revascularization odds using smoothing splines.
    Silva GL; Dean CB; Niyonsenga T; Vanasse A
    Stat Med; 2008 Jun; 27(13):2381-401. PubMed ID: 17944001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian variable selection in modelling geographical heterogeneity in malaria transmission from sparse data: an application to Nouna Health and Demographic Surveillance System (HDSS) data, Burkina Faso.
    Diboulo E; Sié A; Diadier DA; Karagiannis Voules DA; Yé Y; Vounatsou P
    Parasit Vectors; 2015 Feb; 8():118. PubMed ID: 25888970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Within-farm transmission dynamics of foot and mouth disease as revealed by the 2001 epidemic in Great Britain.
    Chis Ster I; Dodd PJ; Ferguson NM
    Epidemics; 2012 Aug; 4(3):158-69. PubMed ID: 22939313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.