These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27760156)

  • 21. Lichens buffer tundra microclimate more than the expanding shrub Betula nana.
    Mallen-Cooper M; Graae BJ; Cornwell WK
    Ann Bot; 2021 Sep; 128(4):407-418. PubMed ID: 33714989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arctic mosses govern below-ground environment and ecosystem processes.
    Gornall JL; Jónsdóttir IS; Woodin SJ; Van der Wal R
    Oecologia; 2007 Oct; 153(4):931-41. PubMed ID: 17618466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century.
    Hollesen J; Buchwal A; Rachlewicz G; Hansen BU; Hansen MO; Stecher O; Elberling B
    Glob Chang Biol; 2015 Jun; 21(6):2410-23. PubMed ID: 25788025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana.
    Pop EW; Oberbauer SF; Starr G
    Oecologia; 2000 Aug; 124(2):176-184. PubMed ID: 28308177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Declining temperature and increasing moisture sensitivity of shrub growth in the Low-Arctic erect dwarf-shrub tundra of western Greenland.
    Weijers S
    Ecol Evol; 2022 Nov; 12(11):e9419. PubMed ID: 36381399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Balancing positive and negative plant interactions: how mosses structure vascular plant communities.
    Gornall JL; Woodin SJ; Jónsdóttir IS; van der Wal R
    Oecologia; 2011 Jul; 166(3):769-82. PubMed ID: 21279654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arctic plant ecophysiology and water source utilization in response to altered snow: isotopic (δ
    Jespersen RG; Leffler AJ; Oberbauer SF; Welker JM
    Oecologia; 2018 Aug; 187(4):1009-1023. PubMed ID: 29955988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vascular plant
    Michelsen A; Quarmby C; Sleep D; Jonasson S
    Oecologia; 1998 Jul; 115(3):406-418. PubMed ID: 28308434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Volatile organic compound emission in tundra shrubs - Dependence on species characteristics and the near-surface environment.
    Simin T; Tang J; Holst T; Rinnan R
    Environ Exp Bot; 2021 Apr; 184():104387. PubMed ID: 33814646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increasing shrub damage by invertebrate herbivores in the warming and drying tundra of West Greenland.
    Finger-Higgens R; DeSiervo M; Ayres MP; Virginia RA
    Oecologia; 2021 Apr; 195(4):995-1005. PubMed ID: 33786709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of nurse shrubs for restoration planting of two conifers in southeast of Mu Us Sandland, China.
    Tian L; Wang X
    J Environ Biol; 2015 Jan; 36(1):331-6. PubMed ID: 26536812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra.
    Boelman NT; Gough L; Wingfield J; Goetz S; Asmus A; Chmura HE; Krause JS; Perez JH; Sweet SK; Guay KC
    Glob Chang Biol; 2015 Apr; 21(4):1508-20. PubMed ID: 25294359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of Mosses on Water Flux in an Alpine Shrub Site on the Qilian Mountains, Northwest China.
    Liu Z; Chen R; Qi J; Dang Z; Han C; Yang Y
    Plants (Basel); 2022 Nov; 11(22):. PubMed ID: 36432840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s.
    Frost GV; Epstein HE
    Glob Chang Biol; 2014 Apr; 20(4):1264-77. PubMed ID: 24115456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicted changes in vegetation structure affect the susceptibility to invasion of bryophyte-dominated subarctic heath.
    Eckstein RL; Pereira E; Milbau A; Graae BJ
    Ann Bot; 2011 Jul; 108(1):177-83. PubMed ID: 21624960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impacts of Arctic Shrubs on Root Traits and Belowground Nutrient Cycles Across a Northern Alaskan Climate Gradient.
    Chen W; Tape KD; Euskirchen ES; Liang S; Matos A; Greenberg J; Fraterrigo JM
    Front Plant Sci; 2020; 11():588098. PubMed ID: 33362815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. When Winners Become Losers: Predicted Nonlinear Responses of Arctic Birds to Increasing Woody Vegetation.
    Thompson SJ; Handel CM; Richardson RM; McNew LB
    PLoS One; 2016; 11(11):e0164755. PubMed ID: 27851768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contrasting vegetation states do not diverge in soil organic matter storage: evidence from historical sites in tundra.
    Stark S; Egelkraut D; Aronsson KÅ; Olofsson J
    Ecology; 2019 Jul; 100(7):e02731. PubMed ID: 30991449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of moss photosynthesis by humic acids from Antarctic tundra soil.
    Byun MY; Kim D; Youn UJ; Lee S; Lee H
    Plant Physiol Biochem; 2021 Feb; 159():37-42. PubMed ID: 33321376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.
    Dawes MA; Philipson CD; Fonti P; Bebi P; Hättenschwiler S; Hagedorn F; Rixen C
    Glob Chang Biol; 2015 May; 21(5):2005-21. PubMed ID: 25471674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.