BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27760158)

  • 1. Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus.
    Kovács KA; O'Neill J; Schoenenberger P; Penttonen M; Ranguel Guerrero DK; Csicsvari J
    PLoS One; 2016; 11(10):e0164675. PubMed ID: 27760158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circuit mechanisms of hippocampal reactivation during sleep.
    Malerba P; Bazhenov M
    Neurobiol Learn Mem; 2019 Apr; 160():98-107. PubMed ID: 29723670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated Excitation and Inhibition of Prefrontal Ensembles during Awake Hippocampal Sharp-Wave Ripple Events.
    Jadhav SP; Rothschild G; Roumis DK; Frank LM
    Neuron; 2016 Apr; 90(1):113-27. PubMed ID: 26971950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dentate Gyrus Sharp Waves, a Local Field Potential Correlate of Learning in the Dentate Gyrus of Mice.
    Meier K; Merseburg A; Isbrandt D; Marguet SL; Morellini F
    J Neurosci; 2020 Sep; 40(37):7105-7118. PubMed ID: 32817247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired hippocampal ripple-associated replay in a mouse model of schizophrenia.
    Suh J; Foster DJ; Davoudi H; Wilson MA; Tonegawa S
    Neuron; 2013 Oct; 80(2):484-93. PubMed ID: 24139046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Awake hippocampal sharp-wave ripples support spatial memory.
    Jadhav SP; Kemere C; German PW; Frank LM
    Science; 2012 Jun; 336(6087):1454-8. PubMed ID: 22555434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States.
    Tang W; Shin JD; Frank LM; Jadhav SP
    J Neurosci; 2017 Dec; 37(49):11789-11805. PubMed ID: 29089440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Most hippocampal CA1 pyramidal cells in rabbits increase firing during awake sharp-wave ripples and some do so in response to external stimulation and theta.
    Nokia MS; Waselius T; Sahramäki J; Penttonen M
    J Neurophysiol; 2020 May; 123(5):1671-1681. PubMed ID: 32208887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity.
    Wang DV; Ikemoto S
    J Neurosci; 2016 Oct; 36(41):10663-10672. PubMed ID: 27733616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Play it again: reactivation of waking experience and memory.
    O'Neill J; Pleydell-Bouverie B; Dupret D; Csicsvari J
    Trends Neurosci; 2010 May; 33(5):220-9. PubMed ID: 20207025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetrode Recording from the Hippocampus of Behaving Mice Coupled with Four-Point-Irradiation Closed-Loop Optogenetics: A Technique to Study the Contribution of Hippocampal SWR Events to Learning.
    Rangel Guerrero DK; Donnett JG; Csicsvari J; Kovács KA
    eNeuro; 2018; 5(4):. PubMed ID: 30225344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Medial Entorhinal Cortex Input to Hippocampal CA1 Is Crucial for Extended Quiet Awake Replay.
    Yamamoto J; Tonegawa S
    Neuron; 2017 Sep; 96(1):217-227.e4. PubMed ID: 28957670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ripples make waves: binding structured activity and plasticity in hippocampal networks.
    Sadowski JH; Jones MW; Mellor JR
    Neural Plast; 2011; 2011():960389. PubMed ID: 21961073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesopontine median raphe regulates hippocampal ripple oscillation and memory consolidation.
    Wang DV; Yau HJ; Broker CJ; Tsou JH; Bonci A; Ikemoto S
    Nat Neurosci; 2015 May; 18(5):728-35. PubMed ID: 25867120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired Hippocampal-Cortical Interactions during Sleep in a Mouse Model of Alzheimer's Disease.
    Benthem SD; Skelin I; Moseley SC; Stimmell AC; Dixon JR; Melilli AS; Molina L; McNaughton BL; Wilber AA
    Curr Biol; 2020 Jul; 30(13):2588-2601.e5. PubMed ID: 32470367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preexisting hippocampal network dynamics constrain optogenetically induced place fields.
    McKenzie S; Huszár R; English DF; Kim K; Christensen F; Yoon E; Buzsáki G
    Neuron; 2021 Mar; 109(6):1040-1054.e7. PubMed ID: 33539763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age Is Associated with Reduced Sharp-Wave Ripple Frequency and Altered Patterns of Neuronal Variability.
    Wiegand JP; Gray DT; Schimanski LA; Lipa P; Barnes CA; Cowen SL
    J Neurosci; 2016 May; 36(20):5650-60. PubMed ID: 27194342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventral Midline Thalamus Is Necessary for Hippocampal Place Field Stability and Cell Firing Modulation.
    Cholvin T; Hok V; Giorgi L; Chaillan FA; Poucet B
    J Neurosci; 2018 Jan; 38(1):158-172. PubMed ID: 29133436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hippocampal Network Oscillations Rescue Memory Consolidation Deficits Caused by Sleep Loss.
    Ognjanovski N; Broussard C; Zochowski M; Aton SJ
    Cereb Cortex; 2018 Oct; 28(10):3711-3723. PubMed ID: 30060138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired spatial learning and suppression of sharp wave ripples by cholinergic activation at the goal location.
    Jarzebowski P; Tang CS; Paulsen O; Hay YA
    Elife; 2021 Apr; 10():. PubMed ID: 33821790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.