These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27760158)

  • 41. Input-Specific Synaptic Location and Function of the α5 GABA
    Magnin E; Francavilla R; Amalyan S; Gervais E; David LS; Luo X; Topolnik L
    J Neurosci; 2019 Jan; 39(5):788-801. PubMed ID: 30523065
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sharp wave ripples during learning stabilize the hippocampal spatial map.
    Roux L; Hu B; Eichler R; Stark E; Buzsáki G
    Nat Neurosci; 2017 Jun; 20(6):845-853. PubMed ID: 28394323
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relocating cued goals induces population remapping in CA1 related to memory performance in a two-platform water task in rats.
    Lee JQ; LeDuke DO; Chua K; McDonald RJ; Sutherland RJ
    Hippocampus; 2018 Jun; 28(6):431-440. PubMed ID: 29601142
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Entorhinal cortex directs learning-related changes in CA1 representations.
    Grienberger C; Magee JC
    Nature; 2022 Nov; 611(7936):554-562. PubMed ID: 36323779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Memory trace replay: the shaping of memory consolidation by neuromodulation.
    Atherton LA; Dupret D; Mellor JR
    Trends Neurosci; 2015 Sep; 38(9):560-70. PubMed ID: 26275935
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proton radiation alters intrinsic and synaptic properties of CA1 pyramidal neurons of the mouse hippocampus.
    Sokolova IV; Schneider CJ; Bezaire M; Soltesz I; Vlkolinsky R; Nelson GA
    Radiat Res; 2015 Feb; 183(2):208-18. PubMed ID: 25621896
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Long-duration hippocampal sharp wave ripples improve memory.
    Fernández-Ruiz A; Oliva A; Fermino de Oliveira E; Rocha-Almeida F; Tingley D; Buzsáki G
    Science; 2019 Jun; 364(6445):1082-1086. PubMed ID: 31197012
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of protein kinase Mζ disrupts the stable spatial discharge of hippocampal place cells in a familiar environment.
    Barry JM; Rivard B; Fox SE; Fenton AA; Sacktor TC; Muller RU
    J Neurosci; 2012 Oct; 32(40):13753-62. PubMed ID: 23035087
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Object and place information processing by CA1 hippocampal neurons of C57BL/6J mice.
    Ásgeirsdóttir HN; Cohen SJ; Stackman RW
    J Neurophysiol; 2020 Mar; 123(3):1247-1264. PubMed ID: 32023149
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Abnormal Locus Coeruleus Sleep Activity Alters Sleep Signatures of Memory Consolidation and Impairs Place Cell Stability and Spatial Memory.
    Swift KM; Gross BA; Frazer MA; Bauer DS; Clark KJD; Vazey EM; Aston-Jones G; Li Y; Pickering AE; Sara SJ; Poe GR
    Curr Biol; 2018 Nov; 28(22):3599-3609.e4. PubMed ID: 30393040
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sleep sharp wave ripple and its functions in memory and synaptic plasticity.
    Zhou Z; Norimoto H
    Neurosci Res; 2023 Apr; 189():20-28. PubMed ID: 37045494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Brain computation. Selective information routing by ventral hippocampal CA1 projection neurons.
    Ciocchi S; Passecker J; Malagon-Vina H; Mikus N; Klausberger T
    Science; 2015 May; 348(6234):560-3. PubMed ID: 25931556
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hippocampal CA1 Ripples as Inhibitory Transients.
    Malerba P; Krishnan GP; Fellous JM; Bazhenov M
    PLoS Comput Biol; 2016 Apr; 12(4):e1004880. PubMed ID: 27093059
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sharp wave/ripple network oscillations and learning-associated hippocampal maps.
    Csicsvari J; Dupret D
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120528. PubMed ID: 24366138
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation.
    Joo HR; Frank LM
    Nat Rev Neurosci; 2018 Dec; 19(12):744-757. PubMed ID: 30356103
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Validating the theoretical bases of sleep reactivation during sharp-wave ripples and their association with emotional valence.
    Laventure S; Benchenane K
    Hippocampus; 2020 Jan; 30(1):19-27. PubMed ID: 31334590
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prioritized experience replays on a hippocampal predictive map for learning.
    Igata H; Ikegaya Y; Sasaki T
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443144
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Firing of Theta State-Related Septal Cholinergic Neurons Disrupt Hippocampal Ripple Oscillations via Muscarinic Receptors.
    Ma X; Zhang Y; Wang L; Li N; Barkai E; Zhang X; Lin L; Xu J
    J Neurosci; 2020 Apr; 40(18):3591-3603. PubMed ID: 32265261
    [TBL] [Abstract][Full Text] [Related]  

  • 59. mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep.
    Varela C; Wilson MA
    Elife; 2020 Jun; 9():. PubMed ID: 32525480
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid and continuous modulation of hippocampal network state during exploration of new places.
    Kemere C; Carr MF; Karlsson MP; Frank LM
    PLoS One; 2013; 8(9):e73114. PubMed ID: 24023818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.