These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27760246)

  • 1. An Approach for Assessing Turbulent Flow Damage to Blood in Medical Devices.
    Ozturk M; Papavassiliou DV; O'Rear EA
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27760246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemolysis Related to Turbulent Eddy Size Distributions Using Comparisons of Experiments to Computations.
    Ozturk M; O'Rear EA; Papavassiliou DV
    Artif Organs; 2015 Dec; 39(12):E227-39. PubMed ID: 26412190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of eddy length scale on mechanical loading of blood cells in turbulent flow.
    Dooley PN; Quinlan NJ
    Ann Biomed Eng; 2009 Dec; 37(12):2449-58. PubMed ID: 19757062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rethinking turbulence in blood.
    Antiga L; Steinman DA
    Biorheology; 2009; 46(2):77-81. PubMed ID: 19458411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump.
    Avci M; Heck M; O'Rear EA; Papavassiliou DV
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1709-1722. PubMed ID: 34106362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A relationship between Reynolds stresses and viscous dissipation: implications to red cell damage.
    Jones SA
    Ann Biomed Eng; 1995; 23(1):21-8. PubMed ID: 7762879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tension of red blood cell membrane in simple shear flow.
    Omori T; Ishikawa T; Barthès-Biesel D; Salsac AV; Imai Y; Yamaguchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056321. PubMed ID: 23214889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending the Power-Law Hemolysis Model to Complex Flows.
    Faghih MM; Keith Sharp M
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27657486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.
    Quinlan NJ; Dooley PN
    Ann Biomed Eng; 2007 Aug; 35(8):1347-56. PubMed ID: 17458700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis.
    Kameneva MV; Burgreen GW; Kono K; Repko B; Antaki JF; Umezu M
    ASAIO J; 2004; 50(5):418-23. PubMed ID: 15497379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the Effect of Red Blood Cells Deformability on Blood Flow Conditions in Human Carotid Artery Bifurcation.
    Urevc J; Žun I; Brumen M; Štok B
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27814428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cumulative and sublethal effects of turbulence on erythrocytes in a stirred-tank model.
    Aziz A; Werner BC; Epting KL; Agosti CD; Curtis WR
    Ann Biomed Eng; 2007 Dec; 35(12):2108-20. PubMed ID: 17909969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel formulation for blood trauma prediction by a modified power-law mathematical model.
    Grigioni M; Morbiducci U; D'Avenio G; Benedetto GD; Del Gaudio C
    Biomech Model Mechanobiol; 2005 Dec; 4(4):249-60. PubMed ID: 16283225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data.
    Li CP; Lo CW; Lu PC
    Ann Biomed Eng; 2010 Mar; 38(3):903-16. PubMed ID: 20020213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of hemolysis in turbulent shear orifice flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear stress related blood damage in laminar couette flow.
    Paul R; Apel J; Klaus S; Schügner F; Schwindke P; Reul H
    Artif Organs; 2003 Jun; 27(6):517-29. PubMed ID: 12780506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.